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Abstract
We describe a discriminative algorithm for automatic VOT mea-
surement, considered as an application of predicting structured
output from speech. In contrast to previous studies which use
customized rules, in our approach a function is trained on man-
ually labeled examples, using an online algorithm to predict the
burst and voicing onsets (and hence VOT). The feature set used
is customized for detecting the burst and voicing onsets, and the
loss function used in training is the difference between predicted
and actual VOT. Applied to initial voiceless stops from two cor-
pora, the algorithm compares favorably to previous work, and
the agreement between automatic and manual measurements is
near human inter-judge reliability.
Index Terms: voice onset time, SVM, discriminative predic-
tion, structured prediction

1. Introduction
Voice onset time (VOT), the difference between the onset of a
stop’s burst and the onset of voicing in the following phone, is
an important perceptual cue to stop voicing and place. VOT is
measured in many clinical and research studies every year, re-
quiring hundreds of transcriber-hours; for example when study-
ing how communication disorders affect speech [1] or how lan-
guages differ in the phonetic cues to stop contrasts [2, 3]. To-
date there is no reliable method for automatically determining
VOT. To replace manual measurement, automatic measurement
would need precision on the order of of 2–5 ms, as the burst and
voicing onsets are often highly transient.

One line of previous work on automatic measurement of
VOT has focused mostly on its use in practical settings: speech
recognition tasks [4, 5, 6], phonetic measurement [7], or ac-
cented speech detection [8]. In these studies, except [6], manual
and automatic measurements are not compared.

In this paper we are concerned with comparing manual and
automatic measurements. This task has been the subject of
some previous studies, each of which use sets of rules acting
on observations of feature vectors to determine the burst and
voicing onsets for a given stop; the particular features chosen
allow for high time resolution. Das and Hansen [9] use features
derived from the Teager Energy Operator representation of the
signal. Stouten and van Hamme [6] use features extracted from
time-frequency reassigned spectra, and Yao [10] uses MFCC
spectral templates with a low frame size (1 ms).

Our approach differs from [6, 9, 10] in an important aspect.
Instead of a set of customized rules to estimate VOT, we use
a discriminative large-margin learning algorithm. The advan-
tage of margin-based discriminative learning algorithms stems
from the fact that the objective function used during the learn-
ing phase is tightly coupled with the decision task one needs to
perform. Given a set of training data – that is, manually-labeled

speech segments – a function is trained to predict the VOT on
unseen data. The training procedure is designed to minimize the
difference between the predicted and manually-measured VOT,
both on the training set and on unseen examples.

One well-known discriminative learning algorithm is the
support vector machine (SVM). The classical SVM algorithm is
designed for simple decision tasks, such as binary classification
and regression. The task of predicting VOT is more complex:
the input is a speech segment of arbitrary length, and the goal
is to predict the difference in time between two acoustic events
in the signal. Our proposed method is based on recent advances
in kernel machines and large margin classifiers for predicting
sequences [11, 12].

The VOT measurement algorithm we develop is based on
mapping the speech signal and the target burst/voicing onset
pair into a vector space endowed with an inner product. Our
learning procedure results in a classifier in this vector space,
which aims to separate the burst/voicing onset pairs correspond-
ing to manually-labeled data from all other possible onset pairs.
In this sense our method is closely related to work by Keshet et
al. [13] on discriminative forced alignment of speech; here we
use a different loss function and a different set of feature maps.

2. Problem Setting
In the problem of VOT measurement, we are given a segment of
speech, beginning with a stop consonant (plosive) followed by a
voiced phone. The goal is to predict the time difference between
the onset of the stop burst and the onset of voicing in the fol-
lowing phone. The speech segment can be of arbitrary length,
and its beginning need not be precisely synchronized with the
stop’s burst or closure; it is only required that the segment begin
before the burst onset. This setting supports a more rich defi-
nition of the problem as follows: given a speech utterance and
an orthographic transcription, the goal is to find the duration of
all VOTs. This can be achieved by utilizing a forced aligner to
roughly find the location of the stops which are followed by a
voiced phone and then call the procedure to find the VOTs.

We represent the speech signal by a sequence of acoustic
feature vectors x̄ = (x1, . . . ,xT ), where each xt (1 ≤ t ≤ T )
is a D-dimensional vector. We denote the domain of the feature
vectors by X ⊂ RD . Naturally, different signals have different
lengths, and thus T is not fixed; we denote by X ∗ the set of
all finite-length sequences over X . We define the label of x̄ as
a pair of numbers: tb ∈ T , the onset of the burst (in frames),
and tv ∈ T , the onset of voicing of the following phone, where
T = {1, . . . , T}. We assume here that tb < tv , and leave the
case of “prevoiced” stops to future work. Our goal is to learn
a function f from the domain of all speech segments X ∗ to the
domain of all onset pairs T 2.



3. Learning Apparatus
We follow a supervised learning approach, where the function
f is learned from a training set of examples. Each example
consists of a speech segment x̄ and a label (tb, tv). Our goal
is to find a function which performs well on the training set, as
well as on unseen examples. The performance of f is measured
by the percentage of predicted VOT values, tv − tb, which are
within a time threshold of the manually-labeled values.

Given an example (x̄, tb, tv), let (t̂b, t̂v) = f(x̄) be the pre-
dicted onset pair. The cost associated with predicting (t̂b, t̂v)
when the manually-labeled pair is (tb, tv) is measured by a cost
function, γ : T 2 × T 2 → R. The function used in our experi-
ments is of the form:

γ
`
(tb, tv), (t̂b, t̂v)

´
= max{|(t̂v−t̂b)−(tv−tb)|−ε, 0}, (1)

that is, the only VOT differences greater than a threshold ε are
penalized. This cost function takes into account that manual
measurements are not in general exact; ε can be adjusted ac-
cording to the level of measurement uncertainty in a dataset.
For brevity, we denote γ = γ

`
(tb, tv), (t̂b, t̂v)

´
.

Following the structured prediction scheme, we make use
of a predefined set of N feature maps, {φj}Nj=1, each a func-
tion of the form φj : X ∗ × T 2 → R. That is, each feature map
takes a speech segment x̄ and a proposed onset pair (tb, tv), and
returns a scalar which, intuitively, represents the confidence in
the suggested pair, and should be high when (t̂b, t̂v) is close
(measured by γ) to the manually-labeled pair (tb, tv). We re-
strict ourselves to the set of linear functions of the feature maps,

f(x̄) = arg max
(tb,tv)

w · φ(x̄, tb, tv), (2)

where w ∈ RN is a vector of weights, denoting the relative
importance of the feature maps, that we need to learn. In § 3.1
we describe the set of feature maps we used, and in § 3.2 we
describe how w is estimated from a training set of examples.

3.1. Features and Feature Maps

Consider the speech segment x̄ = (x1, . . . ,xT ) consisting of
T frames, where each acoustic feature vector xt consists of D
features. We extracted 7 (D = 7) acoustic features every 1
ms. The first 4 features refer to an STFT taken with a 5 ms
Hamming window: the total spectral energy, Etotal; the energy
between 50–1000 Hz, Elow; the energy above 3000 Hz, Ehigh;
and the Wiener entropy, Hwiener, a measure of spectral flatness:

Hwiener(t) = log

Z
|P (f, t)|2df −

Z
log |P (f, t)|2df,

where P (f, t) is the STFT of the signal at frequency f and time
t. The low frame rate and window size are used for fine time
resolution, because the burst and voicing onsets are highly tran-
sient events.

The fifth feature, Rl, is extracted from the signal itself: the
maximum of the FFT of its autocorrelation function, starting 6
ms before and ending 18 ms after the frame center. The sixth
feature is the pitch track given by the Sha & Saul pitch tracker
[14]; the seventh feature, V , is the 0/1 output of a voicing de-
tector based on the RAPT pitch tracker [15]. Features 6–7 are
smoothed with a 5 ms Hamming window.

Before presenting the feature maps, we introduce nota-
tion for local differences. Let xd be the d-th acoustic feature
(1 ≤ d ≤ D). Let ∆s

t (x
d) be the local difference of resolution

s applied to the acoustic feature xd, defined as the difference
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Figure 1: Acoustic features for one example (“can’t”). The ver-
tical lines correspond to the burst and voicing onsets. Hwiener

and Ehigh rapidly increase at the burst onset, while Elow, Rl,
and V rapidly increase at the voicing onset.

between (1) the mean of xd over frames {t, . . . ,min(t+s, T )}
and (2) the mean of xd over frames {max(t − s, 0), . . . , t}.
This quantity provides a local approximation of the derivative
of xd at frame t, with resolution parametrized by s.

We now turn to the feature maps. For each example
(x̄, tb, tv), 59 feature maps (N = 59) were calculated:

• logEtotal(tb), logEhigh(tb), Hwiener(tb) (3 functions)
• logEtotal(tv), logElow(tv), logEhigh(tv), Hwiener(tv),
Rl(tv) (5 functions)

• ∆s
t (x

d) for s ∈ {5, 10, 15}, t ∈ {tb, tv}, and d ∈
{1, . . . , 5}. (30 functions)

• ∆s
t (x

d) for s ∈ {5, 10, 15}, t = tv and features d ∈
{6, 7} (6 functions)

• For s ∈ {5, 10} (8 functions):
– mean and maximum of ∆s

t (Rl) over t ∈ [tb, tv].
– mean and maximum of ∆s

t (Rl) over t ∈
[tb,min(tv − 10, tb)].

• For the features xd ∈ {Hwiener, logEhigh} (4 functions):
– mean of xd over [tb, tv] minus the mean over

[1, tb]
– maximum of xd over [1,max(tb − 5, 1)]

• For the features xd ∈ {Hwiener, logEhigh, V }, the mean
of xd over [1,max(tb − 5, 1)]. (3 functions)

Intuitively, we expect tb and tv to occur at points of rapid
change, where some local difference features spike. As in the
example in Fig. 1, there is often a rapid increase in Hwiener and
Ehigh at the burst onset tb , and a rapid increase in Rl, Elow, and
V at the voice onset tv .

3.2. A Discriminative Algorithm

We now describe a simple iterative algorithm for learning the
weight vector w, based on the family of algorithms described
in [16] for structured prediction. The algorithm receives as in-
put a training set S = {(x̄i, tib, tiv)}mi=1 of examples and a pa-
rameter C, and works in rounds. At each round, an example is
presented to the algorithm, and w is updated. We denote by wi

the value of the weight vector after the i-th iteration. Initially
we set w0 = 0. Let (t̂ib, t̂

i
v) be the predicted onset pair for the

i-th example according to wi−1,

(t̂ib, t̂
i
v) = arg max

(tb,tv)
wi−1 · φ(x̄i, tb, tv) . (3)



We set the weight vector wi to be the minimizer of the follow-
ing optimization problem,

min
w,ξ≥0

1

2
‖w −wi−1‖2 + Cξ (4)

s.t. w · φ(x̄i, tib, t
i
v)−w · φ(x̄i, t̂ib, t̂

i
v) ≥ γ − ξ ,

where C serves as a complexity-accuracy trade-off parameter
as in the SVM algorithm and ξ is a non-negative slack variable,
which indicates the loss of the i-th example. Intuitively, we
would like to minimize the loss of the current example (the slack
variable ξ) while keeping the weight vector w as close as pos-
sible to our previous weight vector wi−1. The constraint makes
the projection of the manually-labeled onset pair (tib, t

i
v) onto

w higher than the projection of the predicted pair (t̂ib, t̂
i
v) onto

w by at least the cost function between them. It can be shown
(see [16]) that the solution to the above optimization problem is

wi = wi−1 + αi∆φi , (5)

where ∆φi = φ(x̄i, tib, t
i
v) − φ(x̄i, t̂ib, t̂

i
v). The value of the

scalarαi is based on the cost function γ, the different scores that
the manually-labeled onset pair and the predicted pair received
according to wi−1, and a parameter C. Formally,

αi = min
n
C , max{γ −wi−1 ·∆φi, 0}/‖∆φi‖2

o
. (6)

Given a training set of m examples we iterate over its ele-
ments, possiblyM epochs, and update the weight vectorM ·m
times. A common procedure is to use the latest weight vector
wMm to classify unseen utterances. Another alternative, often
resulted with much better performance is to use the average of
{w1, . . . ,wMm} rather than just its last element. We denote
this average by w∗. A theoretical analysis shows that with i.i.d.
assumptions over the data, the average estimate is optimal, in
the sense that, with high probability the loss suffered over new
speech segment will be small [17].

4. Data
The data are audio of English words beginning with initial
voiceless stops (/p/, /t/, /k/), drawn from two datasets.

TIMIT: We considered all words (excluding SA1 and SA2
utterances) transcribed as beginning with an unvoiced stop clo-
sure and burst, followed by a voiced segment, resulting in 4126
words from all 630 speakers. The VOT boundaries and word
boundaries were determined manually or automatically for dif-
ferent subsets of the data, as described below.

Big Brother (BB): A corpus of speech from Big Brother
UK , a reality television show [18]. 704 word-initial voiceless
stops, have been manually annotated for VOT by (one of) two
transcribers (85%/15%); the end of each word has also been an-
notated. Words come from spontaneous speech in the “diary
room”, an acoustically clean environment. Data come from 4
speakers, wearing individual microphones. Because the begin-
nings of words have not been annotated, we took each word to
begin 25 ms before its burst. Differently to the TIMIT data, we
did not exclude stops with no preceding closure. Stops with
no following voiced segment were kept if there was still abrupt
spectral change at the end of the burst, and excluded otherwise.

5. Experiments
To evaluate our algorithm, we performed experiments using the
TIMIT and BB datasets. In all experiments, we only considered

burst onsets tb within 0–150 ms of the start of the word, and
voicing onsets tv 15–200 ms later than tb; this step attempts to
restrict the algorithm’s focus to the first two segments of each
word. We fix C = 5, as varying it has little effect on perfor-
mance, and we set ε = 4 in all experiments.

5.1. Big Brother

Because of the relatively small amount of BB data, we used
four-fold cross-validation. For each speaker, our algorithm was
applied to the other three speakers’ data, with M = 3. The
resulting weight vector w∗ was used to determine (tb, tv), and
hence VOT, for that speaker’s stops.

To evaluate the algorithm’s performance, we ask how the
difference between the automatic and manual measurements
compare to differences between human transcribers. For a sub-
set of the data (65 stops), VOT was measured by a second tran-
scriber. Fig. 2 shows the distribution across stops of the dif-
ference between the automatic and manual measurements, as
well as the distribution of inter-transcriber differences. The
algorithm performs very well: automatic/manual agreement is
higher than inter-transcriber agreement.

5.2. TIMIT

For the TIMIT data, we trained a single weight vector w∗, then
applied it to several test sets.

For training, we applied our algorithm to all examples from
the TIMIT training set (3088 stops), with M = 2. For each
example, the word boundaries were taken from the TIMIT tran-
scription, and VOT boundaries (tb, tv) were taken to be the
burst boundaries. Because the burst sometimes ends after the
onset of voicing, this step is an approximation, one which al-
lows us to take advantage of the size of TIMIT.

For testing, we first applied w∗ to the core TIMIT test set,
and to the complete test set. To check how much the auto-
matic measurement process depends on the accuracy of word
boundaries, we ran experiments both using the TIMIT bound-
aries, and boundaries given by forced alignment (FA), carried
out as follows. For each utterance, the orthographic transcrip-
tion was converted to phones using the TIMIT dictionary, with
sil added before each closure; alignment was then performed
as in [13]. For some examples (5.4%/7.13% for core/complete),
FA did not give a left boundary beginning 0–150 ms before the
burst beginning; these examples were not used in testing. Run-
ning time was 10 minutes for the complete test set (75%/25%
train/test) on an Intel Xeon 2.66 GHz, running Linux.

Fig. 2 shows the distribution of differences between auto-
matic and manual VOTs (taken to be the burst duration, as in
training), for experiments using both test sets and both types of
word boundaries. Using FA word boundaries decreases perfor-
mance slightly over the core test set, compared to manual word
boundaries, but has little impact over the complete test set.

5.3. Comparison with previous work

Our results can be most closely compared with Stouten & van
Hamme (SvH; [6]), who automatically measured VOT for stops
from TIMIT, using a knowledge-based algorithm (see §1). SvH
consider voiced and voiceless stops, in all positions. They took
manual measurements for a subset of 582 stops (the “manual”
dataset), and compared these to their automatic measurements.

We applied our algorithm to the 293 voiceless stops from
SvH’s “manual” dataset, once by training w∗ on all BB data
(with M = 1) and once using w∗ from the TIMIT experiments
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Figure 2: Cumulative distributions of absolute differences between manual and automatic VOT measurements, in Big Brother (§5.1),
TIMIT (§5.2), and Stouten & van Hamme (§5.3) datasets. Details in text.

just described, yielding two sets of automatic VOT measure-
ments. Because we are now not only dealing with stops in initial
position, the left “word” boundary for each example was deter-
mined differently from above. Each example was taken to start
at the beginning of the segment preceding the burst (the clo-
sure, if one was present), and end at the right word boundary;
all boundaries were taken from TIMIT.

Fig. 2 shows the distribution of difference in VOT, tdiff, rel-
ative to SvH’s manual measurements, for the three automatic
measurement methods: training on BB, training on TIMIT, and
SvH1. Using either w∗, our algorithm arguably performs as well
as SvH for examples with tdiff greater than 15 ms, and better
than SvH for examples with tdiff less than 15 ms. We note that
our algorithm was only trained on initial stops, but tested on
stops in all positions, and the training and testing data were ei-
ther from different datasets (BB vs. TIMIT) or labeled by differ-
ent annotators (SvH vs. TIMIT annotators). This might show the
robustness of the algorithm to a different environments.

Table 1: Experimental perfor-
mance using metrics from [9, 10].

RMS (ms) ≥10%
TIMIT all 8.66 0.35

complete FA 7.56 0.36
TIMIT all 5.28 0.34
core FA 5.18 0.31

Big Brother 7.74 0.23
Yao [10] 10.8 –
Das/Hansen [9] – 0.25

Our results can
be compared less
directly with other
studies where auto-
matic and manual
measurements are
compared. Das &
Hansen [9] report
the percentage of
stops where auto-
matic and manual
measurements differ

by ≥10%; Yao [10] reports RMS error for automatic measure-
ment of the burst onset only. Table 1 gives these metrics for
our TIMIT and BB experiments. Though comparison is difficult
because of the different datasets used, all experiments’ RMS
error out-performs [10], and our best-performing experiment
(BB) outperforms [9]. We note that Das & Hansen consider
isolated words, where VOTs are much easier to measure than
in the types of speech considered here (read or conversational).

We would ideally compare the results of discriminative
measurement with the “gold standard” of human interjudge re-
liability (IJR), but are not aware of recent studies giving IJR
measures for the types of speech considered here. However, we
have shown for the BB dataset that the agreement between our
automatic and manual measurements is better than between two
human transcribers, and tentatively conclude that our algorithm
achieves near-IJR performance.
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