Prosodic structure affects processing: The case of English past inflection

Heather Goad Natália Brambatti Guzzo

McGill University <u>heather.goad@mcgill.ca</u>, <u>nataliaguzzo@me.com</u>

LabPhon 17 | UBC and SFU | July 6-8 2020

Inflected forms in the mental lexicon

In the literature on lexical access, there is much debate about whether or not inflected forms are stored in the mental lexicon.

Some proposals:

One route models:

All inflected forms (both regular and irregular) are stored (e.g., Bybee, 1995; Rumelhart & McClelland, 1986)

Two route models:

- Irregular forms are stored but regularly inflected forms are generated by rule (e.g., Pinker & Prince, 1994)
- Regularly inflected forms can be stored under certain conditions, for example, if they are very frequent (e.g., Pinker & Ulmann, 2002)

Our focus: Regularly inflected forms in the past tense in English

Assumption: Regularly inflected forms are recursive prosodic words (PWds) (Goad & White, 2006)

Evidence: Regularly inflected forms can violate the phonotactic and length constraints that hold of monomorphemic (simple) PWds:

- 1. Phonotactic (non-exhaustive): obstruent+stop clusters must be voiceless in simple PWds (Goldsmith, 1990): [saft]_{PWd} 'soft' vs *[savd]_{PWd}
- 2. Length: final rhymes in simple PWds are max 3 segments long (VXC), unless CC# is [cor] (Harris, 1994): [striːk]_{PWd} 'streak', [strikt]_{PWd} 'strict' *vs* *[striːkt]_{PWd}; [peist]_{PWd} 'paste' *vs* *[peift]_{PWd}

Hypothesis: The prosodic representation of regularly inflected forms affects their processing; i.e., prosodic shape impacts storage

Representation of inflected forms

Observation: Inflected forms can violate both phonotactic and length constraints (1 and 2 on previous slide), which suggests that the inflection is not represented within the simple PWd

- (1c) vs (2): forms whose bases are shaped such that attachment of inflection respects phonotactic and length constraints of monomorphemic words (*sniffed*; cf. *soft*) have a **potentially ambiguous** structure: they could be built recursively or they could be stored as simple PWds
- (1a-b) and (1d): inflected forms that do not respect phonotactic and/or length constraints of monomorphemic words (*typed, saved; grabbed*) are **unambiguously recursive**

Experiment

Predictions:

- forms that are unambiguously recursive are retrieved faster ((1a-b), (1d) on previous slide), as they are invariably decomposed prosodically
- forms that are inflected but whose profile could fit the simple PWd structure of monomorphemic words ((1c) on previous slide) are retrieved more slowly

Task: lexical decision with auditory stimuli in OpenSesame (Mathôt et al., 2012)

- stimuli: monosyllabic targets (n = 524, divided into two versions) and fillers (n = 260)
- target items:
- real/nonce (e.g., *save/tave*; nonce verbs were generated by changing the onset of a real verb)
- inflected/uninflected (e.g., saved/save)
- long/short stem (e.g., *roll/fill*, *poke/crack*, *sneeze/buzz*)
- inflected verb as possible/impossible simple PWd (e.g., *rolled/poked*, *cracked/buzzed*) ex: inflected *rolled* \rightarrow [[roul]_{PWd} d]_{PWd}, could be [rould]_{PWd} (cf. monomorphemic *cold* \rightarrow [kould]_{PWd}) inflected *poked* \rightarrow [[pouk]_{PWd} t]_{PWd}, could not be *[poukt]_{PWd} (no monomorphemic parallels)

Analysis: participants' response times (RTs) were examined with mixed-effects linear regressions with by-participant and by-item random intercepts in R (R Core Team, 2020)

Results

Figure 1: Participants are:

- faster with real than nonce verbs ($\hat{\beta} = -0.16, p < 0.0001$)
- faster with inflected than uninflected verbs ($\hat{\beta} = -0.05$, p = 0.005)
- slower with short stems than long stems ($\hat{\beta} = 0.10, p < 0.0001$)
- Result for **real vs. nonce** verbs is consistent with previous findings (e.g., Vitevich & Luce, 1998)
- Result for **uninflected vs. inflected** suggests that inflection is not more costly for listeners (relative to non-inflection)
- Length alone does not determine prosodic structure: it could be that participants are simply faster with long stems because they have more time to retrieve the target item from their mental lexicon

Figure 2:

- To examine the role of prosodic structure in lexical access, we looked at whether being a possible simple PWd affects RT for real inflected verbs
- Length and prosodic structure: The statistical model shows an interaction between short stems (e.g., *sniffed*, *grabbed*) and being a possible simple PWd (*sniffed* only, cf. *soft*), with significantly slower RTs ($\hat{\beta} = 0.13$, p = 0.03)

Figure 2. RTs for possible vs. impossible PWd in real, inflected verbs (long vs. short stems)

Discussion and conclusion

- These results are overall **consistent with our predictions:** short inflected possible PWds are retrieved more slowly because listeners must arbitrate between two competing representations: [snif]_{PWd} t]_{PWd} and [snift]_{PWd} 'sniffed'
- However, Figure 2 suggests that **being a possible PWd affects only the processing of verbs with short stems:** long inflected possible PWds seem to be retrieved as quickly as long inflected impossible PWds
- We conjecture that this is because long inflected forms are possible PWds under much more **restricted conditions** than short inflected forms are (CC# must be coronal; slide 1)

- The results for short inflected stems support our hypothesis that the **prosodic representation of regularly inflected forms affects their processing**
- This finding supports **two route models** of lexical access, where inflected forms are stored under some conditions (irregular *vs* regular, frequent *vs* infrequent), but it adds to the conditions under which inflected forms can be stored: when they respect the phonotactic *and* length constraints of monomorphemic PWds

References

Bybee, J. (1995). Regular morphology and the lexicon. *Language and Cognitive Processes*, 10, 425–255. Goad, H. & White, L. (2006). Ultimate attainment in interlanguage grammars: A prosodic approach. *Second Language Research*, 22, 243–268.

Goldsmith, J. (1990). Autosegmental and metrical phonology. Oxford: Blackwell.

Harris, J. (1994). English sound structure. Oxford: Wiley Blackwell.

Mathôt, S., Schreij, D. & Theeuwes, J. (2012). OpenSesame: An open-source, graphical experiment builder for the social sciences. *Behavior Research Methods*, 44, 213–324.

Pinker, S. & Prince, A. (1991). Regular and irregular morphology and the psychological status of rules of grammar. *Proceedings of BLS 27*, 230–251.

Pinker, S. & Ullman, M. (2002). The past and future of the past tense. Trends in Cognitive Science, 6, 456–463.

R Core Team (2019). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria.

Rumelhart, D. & McClelland, J. (1986). On learning the past tenses of English verbs: Implicit rules or parallel distributed processing? In D. Rumelhart, J. McClelland, and the PDP Research Group (eds.), *Parallel Distributed Processing: Explorations in the microstructure of cognition*. Vol 2: Psychological and biological models. Cambridge, MA: MIT Press.

Vitevich, M. S. & Luce, P. A. (1998). When words compete: levels of processing in perception of spoken words. *Psychological science*, 9(4), 325–329.

Acknowledgements

We would like to thank Michael McAuliffe, Francie Freedman, Giulherme D. Garcia and James Tanner. This research was supported by grants from SSHRC and FRQSC.