Proceedings of CLS 46(1), 43-58, 2010 43

© Chicago Linguistic Society 2013. All rights reserved.

Longitudinal phonetic variation in a closed system
Max Bane Peter Graff Morgan Sonderegger
University of Chicago MIT University of Chicago

1 Introduction

We present a progress report on a large-scale corpus study of the trajectories of
different phonetic parameters over the course of three months in a diverse group of
speakers situated in a linguistically and socially closed system. The data analyzed
so far, and presented in this paper, consist of 806 Voice Onset Time (VOT) measure-
ments from four contestants in Season 9 of the reality-television show Big Brother
(Channel 4, United Kingdom). This show offers a unique opportunity to study
“medium term” phonetic change in individuals: longer than studies of accommoda-
tion in the laboratory or in conversation (hours to days), but shorter than real-time
sociolinguistic studies (years). We show that VOT measurements in this dataset,
which consists of conversational speech over the course of three months, show sev-
eral effects consistent with previous work (e.g. the dependence of VOT on place of
articulation). We further show that change in the mean VOT of different speakers
is non-linear over time, with speakers’ VOT trajectories neither fluctuating around
a single mean, nor drifting in a single direction throughout the observed period; in
addition, a significant portion of this time dependence can be explained in terms of
a perturbation to the social organization of the community of speakers, rather than
time per se. While this last finding is post hoc in the sense that the hypothesis was
formalized only after building other models of the data, and is therefore subject to
verification with a larger dataset, it presents preliminary evidence that social factors
can drive phonetic change in individuals over extended periods of time.

2 Background
2.1 The time-course of phonetic variation
There has been significant interest in the extent to which phonetic variables, such
as VOT, change over time in individuals. Previous work on longitudinal phonetic
variation can be divided into “short-term” and “long-term” studies.

In short-term laboratory studies using an “imitation” or “shadowing” paradigm
(reviewed by Nielsen, 2008; Babel, 2009), a subject’s productions are compared
before and after exposure to a stimulus consisting of speech that has been somehow
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manipulated; comparison is either via analysis of a phonetic variable (e.g. VOT),
a broader acoustic variable (e.g. intensity), or perceptual evaluation. Short-term
studies which consider phonetic variables generally show that they are influenced
by the exposure, but that the direction and magnitude of the effect are influenced
by social and linguistic factors. For VOT, Shockley et al. (2004) found that sub-
jects” VOTs for voiceless stops increased following exposure to long-VOT voice-
less stops. Nielsen (2008) replicated this effect, but found that VOT did not change
following exposure to comparable short-VOT stops; Nielsen hypothesizes subjects
did not shorten VOT because this would endanger the contrast with voiced stops.
Studies on “convergence” or “accommodation” (reviewed by Shepard et al., 2001;
Babel, 2009) have examined whether the speech of conversation partners becomes
somehow more similar over the course of interaction. Relatively few such studies
have focused on phonetic variables. The general finding is again that convergence
occurs, but modulated by social and linguistic factors; Heller and Pardo (2010)
show this for VOT.

Long-term studies generally examine a particular phonetic variable, for a small
set of individuals, at several points in time. The null hypothesis is that phonetic vari-
ables remain essentially stable after the critical period; this is implied by the “ap-
parent time” hypothesis of much sociolinguistic work, which states that “linguistic
differences among different generations of a population. . . mirror actual diachronic
developments in the language” (Bailey, 2002). In contrast, a well-known set of
studies by Harrington et al. (2000, et seq) shows that Queen Elizabeth II's vowel
space has shifted since the 1960s in ways consistent with changes in Received Pro-
nunciation over this period, and some other studies (e.g. Sancier and Fowler, 1997;
Evans and Iverson, 2007) have found changes in phonetic variables for individuals
who moved between dialect or language regions. However, it is still not clear how
typical such long-term change is, or how large the effects are; a review of real-time
sociolinguistic studies over the past 20 years concludes only that ... phonology,
even though stable in most of its features across individual life spans, is nonethe-
less available to some speakers for some amount of modification” (Sankoff, 2005).

Short-term studies are able to pinpoint the cause of any change observed in a
phonetic variable, but cannot say how the variable behaves over a longer timespan.
Long-term studies determine whether a phonetic variable has changed over a period
of time, but not what the variable’s behavior was between endpoints. The Big
Brother corpus offers an opportunity to study change in the “medium term.” The
large amount of data available allows us to infer relatively detailed trajectories of
individuals’ phonetic variables over time. It is not clear from previous work what
time-dependence these trajectories should exhibit. A null hypothesis is that each
individual’s trajectory for a given phonetic variable will randomly vary around an
unchanging grand mean. If this is not the case, we can ask what the trajectories look
like: linear vs. non-linear, monotonic vs. bi-directional, and so on. In this paper,
we track VOT in four speakers over three months, and evaluate several hypotheses
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about how their VOT values change over time.

2.2 Social factors

It is well-known that speech is socially stratified, in several senses. Both “macro”
(e.g. gender, age; Labov, 2000), and “micro” (e.g. jocks vs. burnouts; Eckert,
2000) social categories, as well as the particular social identity a speaker wishes to
project (Podesva, 20006), strongly affect phonetic variables. What is less clear is the
mechanism by which phonetic variables come to have social meaning in a speech
community.

A primary motivation of many short-term studies of the type discussed above
is that socially-conditioned convergence of phonetic variables in conversation can
help explain dialect formation and the social stratification of speech (Pardo, 2006);
that is, that a socially-conditioned shift in a phonetic variable, repeated over the
course of many conversations between members of a speech community, can lead
to community-level change (Delvaux and Soquet, 2007). However, a link between
laboratory studies and community-level change is needed to show that convergence
is a possible source of change. Given the number and diversity of social interac-
tions which take place in a community, it is not clear how to test the hypothesis
that a particular (set of) convergence effect(s) has led to a given pattern of stratifi-
cation, without monitoring the majority of interactions and somehow isolating the
community from other speakers.

The Big Brother house offers an opportunity to test for effects of social interac-
tion on phonetic variables in a controlled setting. Because the house is a socially-
closed system and there is good data on interaction between housemates, it is in
principle possible to explicitly test whether change observed in housemates’ tra-
jectories for a phonetic variable can be related to social variables. We leave this
direction largely for future work with a larger corpus, but do present preliminary
evidence that part of the change observed in the trajectories of the four speakers
considered here can be explained in terms of a social perturbation in the house.

2.3 Linguistic covariates of VOT

VOT is one of the best-studied phonetic variables. Many studies, almost exclusively
laboratory-based, have quantified how a range of linguistic, temporal, and social
variables affect VOT, both within and between speakers (see Auzou et al., 2000;
Yao, 2009, for partial reviews). In this paper, we consider four known linguistic
covariates of VOT: two which impressionistically seem to be the most frequently-
discussed in the literature (place of articulation of the stop, speech rate), and two
others (whether the stop occurs in a cluster, frequency of the host word) which
could be easily calculated for our data. In this subsection we briefly describe and
motivate these covariates; we focus on their effect on voiceless stops, as the VOT
data considered below come from voiceless stops only.
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First, it is well-known that VOT varies by place of articulation (POA). Ve-
lar stops (/k/) tend to have longer VOT than alveolar stops (/t/), which tend to
have longer VOT than bilabial stops (/p/). The ordering /p/</t/</k/ holds cross-
linguistically, and is thought to be linked to articulatory factors (Cho and Lade-
foged, 1999). Although not all studies have found significant differences between
all 3 places of articulation, crucially no study has reported a statistically signifi-
cant partial order contradicting /p/</t/</k/. In particular, previous studies on VOT
for English voiceless stops produced by adults agree that /p/</t/, but disagree on
whether /t/=/k/ or /t/</k/ (Whalen et al., 2007).

Laboratory studies have addressed how VOT depends on speaking rate and
whether the following segment is a vowel. VOT decreases with increased speak-
ing rate (e.g. Miller et al., 1986; Volaitis and Miller, 1992), and is longer in stop-
liquid clusters (e.g. /kl/, /pr/) than in CV sequences (e.g. /ka/, /pa/), controlling for
prosody (e.g. Klatt, 1975).

Finally, it has been reported that words with higher token frequency have shorter
mean VOT (for voiceless word-initial stops from the Buckeye corpus; Yao, 2009).
This accords with the long-standing finding that frequent words have shorter dura-
tions, and are generally more affected by various phonetic reduction processes (see
Bell et al., 2009 for a review).

The data presented below consists of VOT measurements from four speakers.
We first normalize VOT by speaking rate, then assess whether the resulting nor-
malized measurements are sensitive to POA, following vowel vs. consonant, and
frequency in directions consistent with previous work.

We note than VOT has been found to covary with many additional linguistic
factors, such as the stress (Lisker and Abramson, 1967) and duration (Port and
Rotunno, 1979) of the following vowel. Future work will assess the effects of these
parameters on VOT. In the models reported below, we assume that at least part of the
effect of additional linguistic variables on VOT is taken into account by modeling
word specific variation using a random intercept.

Furthermore, social (e.g. gender; Swartz, 1992; Ryalls ef al., 1997) and phys-
iological (e.g. hormonal cycles; Wadnerkar et al., 2006) have been found to influ-
ence VOT. We do not consider such speaker-dependent variables because the small
number of speakers analyzed here makes it impossible to differentiate between the
effects of such variables and differences between individual speakers. Future work
will consider data from more speakers, making the inclusion of speaker-dependent
variables possible.

3 Big Brother

The data were obtained from broadcasts of the reality television show Big Brother
(Season 9, Channel 4, United Kingdom). In this show, a group of 15 contestants
(known as “housemates”) live together in a single house, under constant video and
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audio surveillance, for three months. Every week, housemates nominate each other
for “eviction.” At the end of the week, the viewing public decides via call-in vote
which of the two housemates who have received the most nominations are evicted.
The final remaining housemate is declared winner and receives a £100,000.00 cash
prize. Channel 4’s broadcasting of the show includes an hour-long “daily highlights
show,” as well as a 24/7 live feed from the cameras placed throughout the house.!

Housemates are completely isolated from the outside world and without access
to any form of media. The show thus constitutes an ideal natural experiment for
the study of linguistic behavior over time. Housemates are in a linguistically and
socially closed system over a relatively long period, and it is possible to estimate
the linguistic input and output of individual speakers, as well as the social dynamics
of the community.

Each housemate continually wears a wireless microphone, and is recorded al-
most continuously by cameras and microphones planted throughout the house. To
maintain a constant recording environment and social context, we limit our analysis
to audio taken from “diary room clips.” These are short segments of the daily high-
light shows, in which housemates go into the diary room alone to discuss events
in the house with Big Brother (one of several people throughout the season), who
communicates through speakers in the wall. Normally, Big Brother is either silent
or asks short questions to elicit longer responses from housemates, resulting in a
semi-conversational speech style. Audio quality in the diary room is very good.
Each housemate visiting it sits in the same chair, providing a (roughly) constant
recording environment. We consider only clips where a housemate enters the diary
room alone, as is usually the case; this controls for social context. Additionally,
housemates visit the diary room frequently enough (every 1-3 days) to infer de-
tailed time trajectories of phonetic variation.

Each season of Big Brother includes a “twist” which creates unusual social
situations for the housemates. The twist in the season considered here was the
“Heaven-Hell divide.” During Episodes 37-67, the house was split into “Heaven”
and “Hell.” Each week during this period, each housemate was assigned to Heaven
or Hell, depending on performance on various tasks. Hell housemates were com-
pelled to cook for Heaven housemates, and restricted to less comfortable household
amenities and curtailed smoking privileges. In contrast, heaven housemates had
unrestricted smoking rights and sole access to the “luxury” bathroom and bedroom.
This social division was physically embodied by a one-meter-high Plexiglass bar-
rier, preventing Hell housemates from crossing to the Heaven side (and vice versa).
While housemates’ mobility was constrained by the divide, physical and linguistic
interaction across the Plexiglass fence was possible, and occurred frequently. Be-
low, we find that the divide is a social perturbation which coincides with changes in
the VOT trajectories of the speakers included in this study.

TFor brevity, we omit some details of the show’s logistics which are not relevant here; for exam-
ple, two housemates were ejected from the house for bad behavior, rather than voted off.
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HM Episode (number of VOT measurements) Total VOTs

Lisa 2 (10), 13 (30), 20 (15), 27 (18), 35 (27), 41 (17), 59 205
(24), 61 (10), 68 (20), 78 (13), 82 (10), 87 (11)

Michael 3 (25), 13 (23), 17 (12), 22 (12), 41 (31), 45 (18), 68 217
9),76 (21), 84 (43), 92 (23)

Rachel 2 (4),6(23),12 (12),19(5),20 (17),22 (5), 33 (11), 187

37 (5), 54 (22), 61 (19), 65 (4), 73 (6), 76 (11), 87
(2),90 (21), 92 (20)

Rex 8 (26), 15 (35), 27 (8), 41 (30), 51 (18), 59 (17), 76 197
(25), 84 (14), 92 (24)

Table 1: Distribution of VOT tokens measured across speakers and episodes.

4 Data

Due to weekly evictions, the number of speakers in the house decreases over time.
The data used here are from four housemates present for most of the three-month
season: Rachel (the winner), Michael, Lisa, and Rex. Of these four, Lisa is evicted
in the 87th episode, while the rest are present until the 9214 and final episode. The
data are VOT measurements on word-initial, voiceless plosives (/p/, /t/, /k/) ex-
tracted from diary room clips (described above). The temporal distribution of these
measurements is summarized in Table 1. The overall number of VOT measurements
for each housemate is roughly balanced, at 200 4= 15 measurements.

VOT was defined as the duration from the burst of the plosive release to the
zero-amplitude crossing of the first unambiguous period of subsequent voicing.
Measurements were made by two of the authors (MB, MS). A subset of the tokens
(13%) was measured by both, in order to estimate the degree of inter-transcriber
agreement; the two transcribers’ measurements had correlation » = 0.91, and mean
absolute difference of 4.5 ms.

To control for the significant effect of speaking rate on VOT (see Section 2.3),
VOT was normalized (i.e. multiplied) by the number of syllables produced per sec-
ond in a “spurt” of connected speech.? A spurt was defined as a contiguous segment
of speech containing no interval of silence longer than 0.4 seconds. Within a spurt,
syllables were counted automatically using the algorithm described by de Jong and
Wempe (2009), which searches for local peaks of intensity as potential syllable nu-
clei, discounting those that lack sufficient periodicity or a minimum pitch, in order
to exclude high-intensity consonants. In the terminology of de Jong and Wempe,
we required a minimum pitch of 50 Hz, an “ignorance level” of 0 dB (the amount by
which an intensity peak must exceed the median intensity of the spurt), and a mini-

2Thus the interpretation of our normalized VOT measurements is milliseconds x (sylla-
bles/milliseconds), i.e. a fraction of the average syllable in the surrounding spurt.



LONGITUDINAL PHONETIC VARIATION IN A CLOSED SYSTEM 49

mum dip between intensity peaks of 2 dB. The algorithm was found by de Jong and
Wempe to correlate well with hand-measured syllable counts in corpora of Dutch
speech (0.7 < r < 0.88)

We note that previous laboratory studies have used a variety of measures of
speech rate, such as following vowel duration and surrounding syllable duration.
However, these measures could in principle vary independently, and it is not yet
certain how they extend to conversational speech, making it unclear which mea-
sure(s) to use for our corpus. We use only one measure of speech rate here, but plan
to consider several in a more principled fashion in future work.

5 Models

In this section, we employ linear mixed effects modeling to test different hypotheses
about the VOT distributions of our four speakers over the course of the three-month
season. We test (i) whether VOT measurements obtained so far exhibit the same
effects of different linguistic factors found in previous studies, and (ii) how (if at
all) housemates’ VOT distributions change over time. The dependent measure in
all models is VOT normalized by speech rate, as described above. Unless otherwise
noted, we use “VOT” to refer to normalized VOT below.

5.1 Predictors

To test whether VOT measurements in our corpus show effects of the linguistic
factors discussed above (Section 2.3) in accord with previous work, we include a
number of predictors based on these factors. PLACE OF ARTICULATION of the
word-initial consonant (bilabial, alveolar, velar) was Helmert-coded, comparing
mean VOT for bilabial (/p/) to alveolar stops (/t/) and mean VOT for [+anterior]
(/p/, It/) to [—anterior] stops (/k/) . One contrast-coded predictor (PHONOLOGICAL
CONTEXT) assessed the difference in VOT between stops in CV sequences vs. in
stop-liquid clusters (peas vs. please, pray). Finally, the centered log token fre-
quency (CELEX2; Baayen et al. 1996) of the particular word beginning in a voice-
less stop was included as a numerical predictor, to test the effect of frequency on
VOT (FREQUENCY). To estimate the effect of time on VOT trajectories, we include
a numerical predictor: the number of days elapsed in the season at utterance time
(TIME); this predictor was centered.

To control for speaker-specific differences in VOT, we further included a dummy-
coded predictor specified for the particular speaker (SPEAKER), which was then
contrast coded (i.e. each of the 3 SPEAKER contrasts sums to 0 across the dataset).
This is preferable to using random effect terms (i.e. by-SPEAKER random intercepts
or random slopes), given the small number of levels (4) for SPEAKER in the current
dataset (Snijders and Bosker, 1999). We also included (two-way) interactions of
SPEAKER with FREQUENCY, PLACE OF ARTICULATION, and TIME, as each of
these terms significantly improved data likelihood (p < 0.05). The interaction of
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Predictor Coding df. x* p

SPEAKER dummy 15 132 <0.0001
+ all interactions

TIME numerical 4 11.2 <0.05
+ interactions with SPEAKER

PLACE OF ARTICULATION Helmert 8 57.3 <0.0001
+ interactions with SPEAKER

PHONOLOGICAL CONTEXT treatment 1 29.6 <0.0001

LOG(FREQUENCY) numerical, centered 4 31.3 <0.0001
+ interactions with SPEAKER

WORD (random effect) none 1 16.0 <0.0001

Table 2: Predictors and their contribution to data likelihood.

SPEAKER with PHONOLOGICAL CONTEXT was not included as it did not signifi-
cantly improve data likelihood (x?(3) = 7.1, p = .068). To allow for word-specific
variation in VOT, we included a predictor (WORD) indexing the particular word
containing the measured consonant, as a random intercept (235 levels: fo, peas,
can...).

The different predictors included in the model, as well as their contributions to
data likelihood, are summarized in Table 2. Overall collinearity of predictors was
very low. The average partial correlation of fixed effects was .09 and the highest
variance inflation factor was 2.08 (where 4, 7 and 10 are common cut-off points
for trustworthy estimates; Fox, 1991). We can therefore be confident that the effect
sizes and directions reported in the next subsection are reliable.

5.2 Results

The linear mixed effects model was fitted in R using the 1mer () function, from
the 1me4 package for mixed-effects models (Bates and Maechler, 2010). We sum-
marize the model, omitting all interactions for brevity.?

We first consider the estimates for the main effects of the linguistic predic-
tors. The effects of PHONOLOGICAL CONTEXT and FREQUENCY were as ex-
pected from previous studies. VOT was higher for words with higher token fre-
quency (8 = —0.0038, t = —1.84, pyeme < 0.01), and normalized VOT was
higher for stops occurring in stop-liquid clusters (mean=0.30, SD=0.11) than for
stops occurring in CV sequences (mean=0.24, SD=0.09; g = 0.063, t = 5.60,
pyueme < 0.0001). The averages for non-normalized VOT were 77 ms (SD=29)
and 60 ms (SD=23) for clusters and CV sequences, respectively. Figure 1 illustrates

3The model formula in 1lmed4-style is: VOT.NORMALIZED ~ PLACE*SPEAKER -+
PHON.CONTEXT + log(FREQUENCY)*SPEAKER + TIME*SPEAKER + (1|WORD), where predic-
tors are coded as described in the text.
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Figure 1: Mean normalized VOT depending on linguistic factors investigated.

the means of normalized VOT in different phonological contexts, and its correlation
with word frequency.

While not substantiating the full /p/</t/</k/ dependence of VOT on place of
articulation often discussed in the phonetic literature, the model’s estimates for
PLACE OF ARTICULATION are consistent with previous laboratory studies. VOT
is higher for /t/ than for /p/ (8 = 0.045, t = 3.60, pyprcme < 0.0001), but there is
no significant difference in VOT between [-anterior] (/k/) and [+anterior] (/p/, /t/)
stops (8 = —0.0045, t = —0.49, pyreyme = 0.20). Our data thus show the par-
tial order /p/</t/=k, the same result as some previous laboratory studies on VOT
in English (see Whalen et al., 2007). Mean normalized VOT was 0.22 (SD=0.10),
0.25 (SD=0.096) and 0.25 (SD=0.098) for /p/, /t/ and /k/ respectively. The non-
normalized VOT means are 56 ms (SD=25 ms), 65 ms (SD=24 ms), and 64 ms
(SD=25 ms). Normalized VOT means for stops at different places of articulation
are illustrated in Figure 1.

Overall, the estimates for the linguistic predictors included in the model are
consistent with observations from previous laboratory studies. This consistency is
encouraging, given the conversational nature of the speech measured for this study.

Additionally, there is a significant main effect of SPEAKER (Lisa § = —0.0025,
t = —0.46, pyome = 0.79; Michael 5 = —0.0014, t = —0.27, pyrome = 0.51;
Rachel 5 = 0.031, t = 5.6, ppreme < 0.0001), meaning that some speakers differ
in their intrinsic VOT ranges, after the effects of linguistic factors, speech rate, and
time have been accounted for; this agrees with laboratory findings by Allen et al.
(2003). The by-word random intercept significantly contributes to data likelihood
(x*(1) = 16.2, p < 0.0001), indicating that words in the dataset have different VOT
ranges, after the effects of some word specific properties (i.e. place of articulation
of the stop) have been accounted for. Including the random intercept reduces the
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chance that word-specific differences in VOT or certain outliers in the data drive the
significances reported here and at least partially accounts for the effect of linguistic
variables not considered in this study.

Finally, we observe that a linear effect of time, including interactions with the
different levels of SPEAKER significantly improves data likelihood (see Table 2).
Figure 2 (top) depicts LOWESS-smoothed lines of VOT measurements for the four
speakers over time as well as the predictions of the model, with its linear predictor
for time. (Model predictions are shown with all predictors other than SPEAKER and
TIME held at their mean values).

It is immediately apparent that the fit of the linear model-predicted curves to
the smoothed trajectories is rather poor. Speakers’ VOT values do not appear to
be either randomly varying around a single mean over the course of three months,
nor changing monotonically (linearly or otherwise). Speakers’ trajectories both
increase and decrease during different parts of the season. To capture this behavior,
a model allowing for more complex time dependence is needed. We now attempt to
improve the model’s predictions for the effect of time, using model comparison to
test whether the addition of more complex time dependence is justified by the data.

5.3 Improving predictions over time

The first step we take to improve the model is to allow for a non-linear effect of
time on speakers’ VOT trajectories. We do so by including restricted cubic splines
(RCS) of TIME, using rcs () in the R package Design (Harrell, 2009). Restricted
cubic splines allow a non-linear function of a continuous predictor to be included
in a regression model without overfitting to peripheral values of the predictor (as
can occur if polynomial terms such as z? are included). The non-linear function is
parametrized by the number £ of “knots” it includes; roughly, k£ — 2 is the number
of “turns” the function has. RCS with 2 knots is simply a linear term; RCS with 3
knots is analogous to a quadratic function (in that it only turns once), and so on.*
We denote a restricted cubic spline with & knots as RCS;,.

Of course, a model which allows for more complex functions of a continuous
predictor will always achieve better coverage, simply by having more degrees of
freedom. The question is whether the added complexity is justified in terms of the
improvement in data likelihood which is achieved. The y2-likelihood test allows us
to assess the improvement in data likelihood relative to the added complexity. We
first test a model where TIME is coded as RCS3, and find that model fit is improved
significantly (x?(4) = 20.4, p < 0.001) relative to a model with only a linear term.
However, a model where TIME is coded as RCS, does not exhibit a significantly
improved fit (x?> = 1.3, p = 0.86) relative to RCSs: the addition of a fourth knot is
not justified relative to the added complexity.’

“For more detail see Harrell (2001, 16-24), and Baayen (2008, Sec. 6.2.1).
3Strictly speaking, only differences in data likelihood between nested models are distributed as
x2. RCS, consists of 3 basis functions of time, Ry = (3 (t),73(t),73(¢)) and RCS3 consists of 2,
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Figure 2: Empirical VOT trajectories vs. model-predicted trajectories for mod-
els with time coded linearly (top), as RCS3 (center), or as a linear term + DI-
VIDE (bottom). For each model, empirical LOWESS-smoothed VOT trajectories
(solid) with standard error (shading) are compared against model-predicted trajec-
tories (dashed). Model predictions are with all predictors other than SPEAKER and
TIME held at their mean values.
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The resulting model, where TIME is coded as a restricted cubic spline with 3
knots, agrees markedly better than a linear model with the empirical time trends
observed in our data. For each speaker, the predictions of the RCS3 model and
the empirical LOWESS-smoothed VOT time trajectories are compared in Figure 2
(middle).

This result constitutes strong evidence for non-linear change in phonetic pa-
rameters over time. Speakers’ VOT distributions are neither constant in the sense
that they fluctuate around a single mean; they show non-linear and non-monotonic
(i.e. not unidirectional) time trends. What is not clear at this point is the source of
the time trends observed in speakers’ VOT trajectories. We next present evidence
that the non-linear portion of this time dependence can be accounted for by a social
variable: the Heaven-Hell divide (discussed in Section 3).

5.4 Towards an explanation for non-linear trajectories

In what follows we introduce a predictor based on a social variable relevant in the
Big Brother house, and use it to perform a post hoc revision of the last model (where
time was coded non-linearly, as RCS3). In the revised model, much of the change
in housemates VOT trajectories can be explained through this variable, rather than
the effect of “time” as such.

Figure 3 shows LOWESS-smoothed normalized VOT trajectories of the four
speakers, as well as the beginning and end of the presence of the divide. We ob-
serve that some housemates’ trajectories (those of Lisa and Rachel, and possibly
also Michael’s) exhibit an inflection point as well as increased slopes somewhere
between Episodes 40 and 60. This corresponds with the period when trajectories
are most dispersed from each other, having begun closer together, and finishing the
season possibly closer still. We note post hoc that this period roughly coincides
with a significant social perturbation to the community of speakers: the presence of
the Heaven-Hell divide.

Inspired by this co-incidence, we test whether the non-linear time dependence in
our model can be accounted for by the presence of the Heaven-Hell divide. To allow
this factor to affect VOT trajectories, we use a dummy-coded predictor (DIVIDE)
and its interactions with SPEAKER; this allows the model to add or subtract a con-
stant from a given speaker’s modeled VOT while the divide is present. DIVIDE is 1
when the divide is present (when 37<TIME<67), and O otherwise.

In order to test whether non-linearities over time can be accounted for by a main
effect of DIVIDE, we employ non-nested model comparison using the y2-likelihood
test. We first fit a superset model containing both DIVIDE and time coded as RCS;
(as well as their interactions with speaker).® We remove each set of predictors

R3 = (r3(t),3(t)). Because 3 is a slightly different function from r3, R3 ¢ R4. However, for
our data the correlation between 3 and r3 is > 0.998, and we consider the models close enough to
use nested model comparison.

5Superset model formula: VOT.NORMALIZED ~ PLACE *SPEAKER + PHON.CONTEXT +
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Figure 3: Empirical LOWESS-smoothed VOT trajectories; vertical lines mark the
beginning and end of the presence of the Heaven-Hell divide.

(DIVIDE+interactions, RCSs+interactions) in turn,” one at a time, to test whether
there is a significant difference in data likelihood between the superset model and
each of the subset models. If one of the subset models differs significantly from the
superset model, while the other one does not, we can conclude that the predictor set
in the model that accounts for the same amount of variance as the superset model is
sufficient to account for the variance in the data.

We observe no significant difference in data likelihood between the superset
model and the subset model including DIVIDE (x?(4) = 5.6, p = 0.23), and a
marginally significant difference between the superset model and the subset model
including the RCS3 of time (x?(4) = 9.3, p = 0.054). By the logic outlined above,
we can conclude that DIVIDE accounts for most of the variance otherwise accounted
for by RCS3, and not vice-versa. We note that non-nested model comparison using
the Bayesian Information Criterion (BIC) gives analogous results.

We have thus shown that a variable related to interaction between housemates,
DIVIDE, can account for the non-linear effect of time observed in our data. There
are caveats: as divide was coded after observing the peculiar shape of VOT tra-
jectories, this result must be verified against data from more speakers, particularly
given that the result of non-nested model comparison is only marginally signifi-
cant; additionally, we have not shown that a predictor based on the presence of the
Heaven-Hell divide is preferable to any other linear adjustment of VOT trajecto-
ries for some fixed time interval (e.g. for 20<TIME<60); this could be tested by
fitting a “breakpoint” regression model. Nonetheless, the finding that perturbations
to our mini speech community’s social system can potentially explain part of the

log(FREQUENCY)*SPEAKER + RCS3(TIME)*SPEAKER + DIVIDE*SPEAKER + (1|WORD).

7 When RCSs+interactions are removed, they are replaced by linear TIME-+interactions.

8The model with time coded as RCS3 has BIC=1676. The model including DIVIDE has
BIC=1674, where lower values imply better fit given model complexity.



56 MAX BANE ET AL.

time dependence of a phonetic variable in that community is novel, and preliminary
evidence for the significance of our data for the study of community-level phonetic
change.

6 Discussion and Conclusion

The three-month timescale of the Big Brother corpus lies somewhere between the
short-term (hours to days) and long-term (months to years) timescales considered
in previous work on longitudinal phonetic change in individuals. With “medium-
term” observational studies of this sort, it is possible to consider relatively frequent
measurements over significant time periods. Furthermore, the unique format of the
Big Brother reality show allows us to track the phonetic variation of a community
that is strictly isolated from outside linguistic contact. We therefore expect the
continued collection and analysis of such data to illuminate the structure and causes
of language dynamics in the house.

The preliminary dataset analyzed here allows some qualitative conclusions that
are statistically robust. First is that the longitudinal distribution of conversational
VOT can be modeled as conditional on at least some of the same covariates as are
known to affect VOT in previous work (primarily laboratory studies): the individ-
ual speaker, his/her speaking rate, the place of articulation, whether the following
phone is C or V, and word frequency. Second is that speakers’ VOT time trajecto-
ries do not appear to be random fluctuation around constant means, at least not as
would be evident on the timescale of the study.” Furthermore, speakers’ trajectories
do not change at a constant rate, and are seen to reverse directions at points.

Finally, the data are at least consistent with a post hoc sociological hypothesis
about changes in speakers’ trajectories—that they coincide with the Heaven/Hell di-
vision of the house. The obvious question is why DIVIDE affects VOT trajectories
as it does. We can currently only offer speculations on this front, to be tested in the
larger dataset. Housemate trajectories seem to diverge when the divide is present;
this could somehow be due to increased conflict in the house during this period. It
is intriguing that the effect of DIVIDE on trajectories seems to differ by housemate
gender: positive and higher amplitude for women, negative and lower amplitude for
men. The small number of speakers in the current dataset currently prevents us from
differentiating between a gender effect and random differences between speakers,
but the effect of social variables on VOT trajectories is an exciting direction for
future work. The effect of the divide could also be related to an aspect of house-
mate dynamics not considered here, such as accommodation to housemates on the
same side of the divide, or changed frequencies of interaction between each pair of
housemates during the split. Thanks to the amount of data available on housemate
interactions, it should be possible to test each of these hypotheses in future work.

That is, the observed time trajectories could in fact be part of a process of random variation, but
on a much longer timescale than 3 months.
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Regardless of its cause, the effect of DIVIDE gives some encouragement that
a larger dataset will reveal further relationships between social dynamics and pho-
netic change in the house. In the long term, we believe that the study of phonetic
change in a socially and linguistically closed system can enrich our understanding
of the time-course of phonetic variation and the effect of social variables on pho-
netic variables, and potentially inform theories of dialect formation and the origin
of social stratification in speech.
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