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Introduction

In many cases of language change, there is exceptionality: only some forms
have changed, or different forms are changing at different rates. For any given
case of change where exceptions exist, there are often several types of plausible
conditioning factors for the behavior of different forms, such as phonetic environ-
ment, social factors, or token frequency. Of interest is the relative contribution of
proposed factors on a form’s likelihood of changing (or rate of change).

This paper considers one such case, the English diatonic stress shift (DSS). We
examine the role of frequency and phonological structure as conditioning factors
for which of a set of noun/verb pairs have undergone the DSS between 1700 and
the present. Previous work by Phillips (1984) has shown a role of frequency: on
average, words which have undergone the DSS have lower frequency than those
which have not. Using a new dataset, we show via multiple logistic regression
that there is a significant effect of frequency in the direction shown by Phillips,
as well as effects of phonological structure; for example, a closed initial syllable
makes change more likely. There is also a strong interaction between the effects of
frequency and structure; in particular, structure modulates the strength and direction
of the frequency effect. Our use of multiple regression follows its widespread use
in sociolinguistics (e.g., Labov 1994) for quantifying the relative effects of different
conditioning factors in cases of language change.

The paper is structured as follows. Section 1 gives background on the DSS. Sec-
tion 2 describes possible conditioning factors related to frequency and phonological
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structure, and Section 3 considers each factor’s effect in isolation. Sections 4–5 dis-
cuss regression models for the joint effect of frequency and structure, and Section 6
sums up.

1 Background

1.1 N/V pairs

Of interest here are English disyllabic, homographic noun/verb pairs, referred to
as N/V pairs throughout. We use the notation {Nstress,Vstress} to denote an N/V
pair’s stress, with 1=σ́σ, 2=σσ́.1 Of the four logically possible stress patterns, all
current N/V pairs for which N and V have categorical stress follow one of 3 patterns:
{1,1} (fracture: N σ́σ, V σ́σ), {1,2} (convict: N σ́σ, V σσ́), {2,2} (cement: N
σσ́, V σσ́). The fourth possible form, {2,1}, is unattested both synchronically
and diachronically (Sherman 1975; Sonderegger and Niyogi 2010). There is also
variation in the pronunciation of a few N/V pairs (e.g., research, perfume).

Change in N/V pair stress was first studied systematically by Sherman (1975),
and subsequently by Phillips (1984) and Sonderegger and Niyogi (2010). In dictio-
nary data from 1570 to the present, four types of clear-cut change can be observed
between the three stress patterns, at the level of individual pairs: {2,2}→{1,2},
{1,1}→{1,2}, {1,2}→{1,1}, and {1,2}→{2,2}.

1.2 The diatonic stress shift

By far the most common type of change observed is {2,2}→{1,2}, from the oxy-
tone pattern to the diatone pattern. We restrict ourselves to this change, the dia-
tonic stress shift (DSS).2 Only two diatones are recorded before 1570 (Minkova
1997:160), suggesting the DSS began in the 16th century. The DSS has been cat-
egorized as lexical diffusion (Sherman 1975; Phillips 1984, 2006) or analogical
change (Kiparsky 1995), and indeed the relationship between the two is contro-
versial (see Phillips 2006, vs. Kiparsky 1995; Janda and Joseph 2003). All that is
important for our purposes is the basic fact that the DSS is lexically gradual.

Most N/V pairs currently stressed as {1,2}, and hence most pairs which have
undergone the DSS, begin with a prefix, such as pre or re (Fudge 1984:32). Setting
aside why this is the case, we can infer that the set of prefixed words contains most
words which could shift stress, an important point for the dataset considered below
(Sec. 3.1).

Two types of motivation for the DSS (i.e., why it occurs at all) have been pro-

1 By “stress,” we always mean primary stress.
2 The other changes are too uncommon to study potential conditioning factors: the next most com-

mon change, {1,1}→{1,2}, only affects 3 words in the sources used here.
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posed; as this paper is concerned instead with which words it has affected, we only
describe these briefly.3 There is a strong tendency in English for nouns to have ear-
lier stress than verbs (e.g., Ross 1973); one explanation for the DSS is that speakers
regularize {1,1} N/V pairs to follow the dominant pattern of stress in the lexicon
(Phillips 2006:37–9). A different account is that the DSS is driven by the interaction
between stress perception and prosodic context (Kelly 1989; references therein).

2 Frequency and structural conditioning

We now describe two types of possible conditioning factors for how likely an indi-
vidual N/V pair is to undergo the DSS: word frequency and phonological structure.

2.1 Frequency conditioning

The most detailed proposal for a conditioning effect comes from Phillips (1984),
who argues that lower frequency words are more likely to undergo the DSS. Phillips
uses two lists of words from Sherman (1975):

1. Changed: Words currently stressed as {1,2}, and known to have undergone
the DSS. (44 N/V pairs)

2. Unchanged: Words currently stressed as {2,2}, designated by Sherman as
“likely to change” to {1,2} in the future. (124 N/V pairs)

All words begin with one of 9 prefixes: a, con/m, de, dis, es, ex, pre, re, sur. Phillips
considers the (combined N+V) frequency for each pair, from the American Heritage
Word Frequency Book (Carroll et al. 1971), and finds that within each prefix class
(words sharing the same prefix), the average frequency of changed words is lower
than that of unchanged words; the data is shown in Fig. 1.

We note that the observed differences in means are not statistically significant;
that is, they could simply be due to chance.4 However, the frequency differences
are consistently in the predicted direction, suggesting that there may be other fac-
tors obscuring an underlying significant effect. One possible issue is the small size
of some prefix classes (e.g., 4 words for pre), which can make a significant differ-
ence in means impossible. For the dataset considered below, we show a statistical
technique to deal with small prefix classes, and consider the role of phonological
structure as well as frequency; one finding is a significant frequency effect in the
direction discussed by Phillips.

3 Of course, the DSS’s motivation and which words it has affected could be related, a possibility not
considered here.

4 Using Mann-Whitney tests (two-sided) of whether the difference in frequencies of changed vs. un-
changed pairs is different from 0 in individual prefix classes (p≥ 0.19 for each prefix), or across all
words (p = 0.5). Because the Mann-Whitney test is sensitive only to the relative order of values,
the p values are the same if frequencies are first log-transformed.
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Figure 1: Frequency data from Phillips (1984). Left: frequencies for individual
words. Right: means across all words of each type ({1,2}, {2,2}), within each
prefix class.

2.2 Structural conditioning

We now discuss two types of possible structural conditioning factors for the DSS:
syllable weight and final segment identity. σ1 and σ2 are used to denote the first
and second syllables of an N/V pair.

Besides the general cross-linguistic correspondence between heavier syllables
and stress, there is theoretical and experimental evidence for the importance of syl-
lable weight to primary stress assignment in English. To a first approximation, En-
glish syllables are heavy if they contain a long vowel (diphthong or tense monoph-
thong) or a coda, and light otherwise; only heavy syllables can bear stress (e.g.,
Giegerich 1992). For disyllabic nouns (the class of words which change in the
DSS), primary stress is predicted to be final if σ2 contains a long vowel, and ini-
tial otherwise (e.g., Chomsky and Halle 1968; Hayes 1982). In disyllabic nonsense
words, Guion et al. (2003) find that syllables with long vowels are more likely to
be assigned stress, but the presence of a σ2 coda does not consistently attract stress;
however, Baker and Smith (1976:21) show that a σ1 coda increases the likelihood
that stress is assigned to σ1 (also in nonsense words). A more direct motivation for
considering the role of syllable weight in the DSS comes from an observation by
Poldauf (1984), that present-day N/V pairs pronounced {1,2} often have a σ1 coda.
In general, we might hypothesize that both heavier σ1 and lighter σ2 make change
to {1,2} more likely.

Although both codas and vowel length contribute to syllable weight, below we
will consider only codas as predictors of whether a word has undergone the DSS.5

5 Because σ1 vowel length can change if stress shifts, it is unclear how it should be coded. We tried
using σ2 vowel length as a predictor, based on the verb pronunciation. There was no significant
difference in this predictor for changed vs. unchanged words, and it did not prove useful in the
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A different type of structural conditioning is suggested by an observation by
Minkova (1997:161): many N/V pairs which at some point have followed the {1,2}
pattern end in /t/ or /d/. Minkova specifically means Romance loans, which includes
many N/V pairs affected by the DSS; the observation fits into a larger account of
the role of Romance loans in changing the Middle English stress system.6 Based
on Minkova’s finding, we predict that words ending in final /t/ or /d/ will be more
likely to shift stress to {1,2}.

We have described two types of factors which may influence whether a word
has undergone the DSS: word frequency and phonological structure. We now turn
to the dataset used to test whether these factors do have any effect.

3 Data

As data, we wish to consider a set W of words stressed {2,2} at some time t1, and
still in use at a later time t2, when each word is stressed {1,2} or {2,2}. W should
be a representative sample of all words which could undergo the DSS between t1
and t2.

3.1 Dataset

In our dataset, t1=1700 and t2 is the present day. These dates were chosen to max-
imize the timespan considered, and hence the number of words which have under-
gone the DSS, given that (Boyer 1700) is the first dictionary listing stress for a
significant fraction of all N/V pairs (according to the data given by Sherman 1975).
To find all words which were pronounced {2,2} in 1700, we would have to man-
ually check an entire dictionary. To avoid doing so, we make use of the fact that
the DSS seems to be largely restricted to prefixed words (Sec. 1.2); the set of pre-
fixed words thus contains most words which could have changed, making it a good
choice for W .

We considered words beginning with one of 17 prefixes.7 Following previous
work (Phillips 1984, 2006), “prefix” is used loosely here, to mean something be-
tween initial syllable and morphological prefix. Some prefixes are theoretically
questionable; for example, re has at least two different senses. The important point
is that most words which have undergone the DSS fall into groups of words with

regression models discussed below.
6 Briefly, an N/V pair ending in /t/ or /d/ will be trisyllabic σσ́σ in the past tense form; this influences

the speaker to assume the N/V pair belongs to a lexical stratum with a highly-ranked constraint (in
the Optimality Theory sense) against final stress, which in turn makes the optimal stress of the N
form σ́σ.

7 The prefixes, and number of words for each, are: re (42), a (20), dis (17), de (16), com/con (9), e
(8), ex (5), sur (4), in/im (3), mis (2), sup (2), pro (2), per (1), pre (1). e refers to words where the
initial vowel is orthographically followed by a consonant other than ‘x’ (e.g., escape, elect).
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similar initial segments, and the behavior of words in the same group may not be
independent.

We found all N/V pairs (a) beginning with one of the 17 prefixes, (b) listed as
{2,2} in Boyer (1700), a French–English dictionary, and (c) pronounced as {1,2}
or {2,2} today, using CELEX (Baayen et al. 1996) and the OED as sources. There
are 132 such words in this set, denoted L, of which 23 have changed: the 1700
pronunciation is {2,2} and the present-day pronunciation is {1,2}. 8

3.2 Inputs

We are interested in the effect of 4 input variables (or inputs) on whether a word
changed, corresponding to the conditioning factors considered above:

• LogFreq: The log of the total (N+V) lemma frequencies, from the British
National Corpus (Leech et al. 2001).9

• Coda1, Coda2: The number of coda consonants of σ1 and σ2, according to
the CELEX syllabification.10 (Range: 0–1 for σ1, 0–3 for σ2.)
• Coda2.td: 1 if Coda2 is /t/ or /d/, 0 otherwise.

As exploratory data analysis, we first consider the effect of each input in isolation.

Frequency Considering the frequency of all words in L (across prefix classes),
the result is the same as for Phillips’ data: the mean of LogFreq is lower for
changed words than for unchanged words, but the difference is not significant
(Mann-Whitney, p = 0.11). We would also like to test whether there is a frequency
effect within prefix classes. However, many prefix classes have few (<5) words
(Footnote 7), and the notion of a difference between changed and unchanged words
does not make sense for such small sets. We thus cannot test within individual
prefix classes without throwing out much of the data (from small prefix classes).

A solution is offered by mixed-effects logistic regression, via the concept of
“partial pooling,” both described below (Sec. 4.3). For the moment, we note that in
a simple mixed-effects model of the effect of LogFreq on whether a word changed,

8 For the N and V forms of each pair, if CELEX listed a pronunciation it was used; otherwise the
OED pronunciation was used. To maximize the number of “changed” words in L, 2 words (per-
fume, surname) with variation in the V form (between σ́σ and σσ́) were counted as {1,2}. Space
constraints prevent us from describing L in detail; the dataset can be found on the author’s web
page (currently, people.cs.uchicago.edu/∼morgan).

9 Six words had frequency 0, either because the N and V lemmas were not present in the BNC or
because frequencies are in integer counts per million, rounded down; many low-frequency words
are thus rounded to 0. To avoid taking log of 0, 0.25 was added to all N+V frequencies.

10Syllabic liquids were not counted as codas.
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Figure 2: Empirical proportion of words which have changed, as a function of
Coda1, Coda2, and Coda2.td.

controlling for prefix class, there is a significant effect of frequency in the pre-
dicted direction (β=−0.28, z=−2.0, p< 0.05): that is, lower frequency promotes
change.11

Structure Fig. 2 shows the proportion of words which have changed , plotted as a
function of the 3 structural variables. In each case, the empirical means trend in the
predicted direction—words with higher Coda1, lower Coda2, or higher Coda.td
are more likely to change—but none of these trends are significant (p > 0.2).12 For
convenience, we refer to these three directions of the structural inputs as hypothe-
sized change-promoting structure, with the caveat that for Coda2 it is actually the
absence of structure that predicts change.

4 Regression models

Considered in isolation, the effects of individual input variables on whether a word
changes are largely insignificant. However, they all trend in the expected directions,
suggesting that more robust effects may be seen if all inputs are included in a single
model. Including frequency and structural variables in the same model also allows
us to check for interactions between the two.

4.1 Logistic regression

We model the effect of frequency and structure on whether a word changes us-
ing logistic regression (LR); which we briefly review to establish terminology. LR
predicts the probability of a binary outcome (the response) given values of the pre-
dictor variables.13 Here, the response is changed: 0 for unchanged words, and 1

11The model includes a fixed effect of LogFreq, with a random effect of Prefix on the intercept.
12Coda1: χ2(1)= 1.55, p= 0.21. Coda2: Spearman rank correlation ρ=−0.11, p= 0.21. Coda.td:

χ2(1) = 0.01, p = 0.92.
13We follow Gelman and Hill (2007:37) in referring to the variables observed for each point—here,

frequency and structure variables—as “inputs,” and the variables used in modeling as “predictors.”
The distinction is that both interactions and main effects of the inputs are predictors.
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for changed words. The data are (~xi,yi) pairs, where each~xi is a vector of predictors
and yi ∈ {0,1} is the response, for an individual data point. The log-odds of y = 1
are modeled as a linear function of~x:

log
P(y = 1|~x)
P(y = 0|~x)

= a+~x ·~β (1)

where a is the intercept and~β is a vector of coefficients.
We are interested in modeling the effects of 4 input variables on changed, as

well as interactions between frequency and structural inputs, and controlling for
prefix class, resulting in at least 8 degrees of freedom. Because we only have 132
data points, we cannot build a single model which considers all these factors at once
without serious danger of overfitting.14 We instead consider two models, each using
a different strategy to reduce the number of degrees of freedom; together, they give
a good picture of what is conditioning the DSS.

4.2 Model 1: Across prefix classes

We first model the effect of all 4 inputs on changed, including possible interactions
between frequency and structure, but disregarding prefix class.

The model was fitted using R, with all inputs centered to reduce collinearity.15

We began with a model including all interactions between LogFreq and the struc-
tural variables (Coda1, Coda2, Coda2.td). The interaction term between Coda2
and LogFreq was removed because its contribution to model likelihood was not
significant (χ2(1) = 0.94, p = 0.33).

The strategy used to address overfitting in Model 1 was penalization of model
coefficients, following Baayen (2008:224–7). Penalization shrinks coefficients to-
wards zero, and decreases coefficient significances. The resulting penalized model
is summarized in Table 1.16

The main effects for structural inputs are all in the predicted directions, and
either significant (p < 0.05: Coda1, Coda2) or approaching significance (p < 0.1:
Coda2.td): on average, words with each type of hypothesized change-promoting
structure were indeed more likely to change. The main effect of frequency is not
significant: on average, there is no frequency effect when structure is controlled for.

14As a rule of thumb, overfitting is a concern for binomial data when the number of points with the
minority outcome is smaller than 10–15 times the number of predictors (Harrell 2001:61); this is
clearly the case for our data.

15LogFreq and Coda2 were centered; Coda1 and Coda2.td were sum coded. Collinearity is of
particular concern because the structural inputs (e.g., Coda2 and Coda2.td) are not independent.
After centering, there was minimal collinearity (condition index=1.89).

16The penalty was 1.25. The penalized model validates fairly well, giving confidence that we have
not overfit the data. Repeatedly taking bootstrap samples and refitting the model, all coefficients
(except the main effect of LogFreq) are different from 0 with significances p < 0.06 (see Baayen
2008: 307–8).
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Predictor Coef. S.E. z p
Intercept -0.73 0.55 -1.3 < 0.001
LogFreq -0.16 0.13 -1.2 0.22
Coda1 1.06 0.53 2.0 0.047
Coda2 -0.98 0.48 -2.0 0.041
Coda2.td 0.96 0.55 1.8 0.078
LogFreq:Coda1 1.01 0.35 2.9 0.0041
LogFreq:Coda2.td 0.56 0.29 1.9 0.056

Table 1: Coefficients, standard errors, Wald z-scores, and significances for Model
1. Nagelkerke pseudo-R2 = 0.22.

However, there is also an interesting interaction between frequency and struc-
ture. The presence of either a σ1 coda or a final t/d significantly changes the ef-
fect of frequency. When neither is present, the slope of LogFreq is negative (in-
creasing frequency makes change less likely); when either is present, the slope of
LogFreq increases, possibly becoming positive. We discuss this effect further be-
low (Sec. 4.4).

4.3 Model 2: Controlling for prefix class

No main effect of frequency was found in Model 1. However, we found in ex-
ploratory data analysis (Sec. 3.2) that a significant frequency effect only emerged
when prefix class was controlled for. In Model 2, we again consider the effects of
both frequency and structure, but controlling for prefix class.

Mixed models and partial pooling The simplest way to control for prefix class
would be to add a Prefix predictor to Model 1, with one level per prefix. However,
several prefix classes have few (< 5) observations, and it is problematic to have
levels of a categorical predictor with so few observations.

An elegant solution to this sort of situation, where the data come in groups of
very different sizes, is offered by mixed-effects logistic regression, via what Gelman
and Hill (2007:252–9) call “partial pooling.”17 In Model 2, in addition to fixed
effects of frequency and structure, we will include a random effect of Prefix on
the intercept. This means we assume that the intercept (a in Eqn. 1)—the intrinsic
likelihood of change, in log-odds—differs by prefix class, and the intercepts for
different prefix classes are normally distributed. Roughly speaking, the intercepts
for small classes are inferred based on the proportion of changed words in large
classes.18

17Baayen (2008) discusses mixed-effects logistic regression for linguistic data.
18The intercepts are fitted by starting with the empirical proportions (% changed words) for each
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Predictor Coef. S.E. z p
Intercept -1.83 0.65 -2.83 0.005
LogFreq -0.35 0.16 2.53 0.012
Structure 1.77 0.70 -2.11 0.035
LogFreq:Structure 2.4 0.74 3.18 0.0015

Table 2: Fixed effect coefficients, standard errors, Wald z-scores, and significances
for Model 2. Nagelkerke R2 = 0.26, calculated relative to a model with only an
intercept term (and no random effects).

Model 2 Ideally, we would fit a mixed-effects logistic regression using the terms
of Model 1 as fixed effects, and simply adding a random effect of Prefix; however,
this model has too many degrees of freedom relative to the number of data points.19

We address overfitting in Model 2 by “data reduction” (Harrell 2001), and re-
duce the degrees of freedom by defining a single composite predictor for structure:

Structure= Coda1− 1
3
Coda2+Coda2.td

Structure increases for any change in a structural input in the direction predicted
to promote change to {1,2}. (Coda2 is divided by 3 because it takes on values
between 0 and 3 in the data, while Coda1 and Coda2.td are 0 or 1.)

The model was fitted in R using lmer, from the lme4 package for mixed-effects
models (Bates and Maechler 2009), with a logistic link. Fixed effects were included
for LogFreq, Structure, and their interaction, and a random effect of Prefix on
the intercept. LogFreq and Structure were centered, and there was little collinear-
ity after centering (condition index = 1.31).

The estimated variance for the random effect term is s2 = 3.0. This term’s
contribution to model likelihood was nearly significant (χ2(1) = 3.8, p = 0.052),
giving some support to the assumption that different prefix classes have different
intrinsic probabilities of change.

The estimated fixed effects are summarized in Table 2. The effect of structure
and its interaction with frequency are qualitatively the same as in Model 1: the
probability of change increases with the amount of hypothesized change-promoting
structure, as does the slope of LogFreq. An important difference from Model 1 is
the significant main effect of frequency: on average, change becomes less likely as
frequency increases. This comes from controlling for prefix class, not from using
a composite predictor for structure: the main effect of frequency is marginal (p =

prefix class, and adjusting them to follow a normal distribution; the key fact is that the smaller the
prefix class, the more its intercept can be adjusted.

19Bearing out this intuition, the resulting model does not validate well: some fitted coefficients are
not significantly different from 0 using bootstrap samples. (See Footnote 16.)
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Frequency quartile
Q1 Q2 Q3 Q4

ρstructure -0.21 0.35 0.39 0.21
p 0.22 0.044 0.026 0.25

Structure quartile
Q1 Q2 Q3 Q4

ρfreq -0.40 -0.31 0.051 0.72
p 0.004 0.07 0.77 0.008

Table 3: Left: Spearman rank correlations between Structure and changed
for words in each frequency quartile. Right: Correlations between LogFreq
and changed for words in each Structure quartile. Bold values are significant
(p < 0.05).

0.10) if Model 2 is fitted without the random effect term.20

4.4 Regression models: interpretation

Models 1 and 2 give significant insight into the roles of frequency and structure in
conditioning the DSS.

Structure In both models, there were significant main effects for structural inputs
in the hypothesized directions. To our knowledge, this is the first demonstration that
stress shift in N/V pairs is conditioned by phonological structure.

Model 1 is useful for understanding the relative role of different structural vari-
ables. More σ1 coda consonants, fewer σ2 coda consonants, and the presence of
final t/d all increased the likelihood of change. It would be nice to know the rela-
tive importance of the three structural inputs to how likely a word is to change; this
comparison is complicated by the presence of interaction terms. One approach is to
compare the average predictive difference per unit (APDU) of each input: the aver-
age difference in probability predicted by the model, across all data points, when a
given input is varied by one unit, with other inputs held at their observed values.21

The APDU of Coda1 is 0.24, compared to 0.17 for Coda2.td and -0.13 for Coda2.
By this measure, whether a word has a σ1 coda is somewhat more important in
determining its probability of changing than the length of its σ2 coda, or whether it
ends in /t/ or /d/.

Model 2 is useful for a broader understanding of the role of structure. Be-
cause we centered LogFreq, the main effect of Structure is to be interpreted
with frequency held at its mean value: on average, more hypothesized change-
promoting structure makes change more likely. But because of the large interac-
tion with frequency, the effect of structure is predicted to diminish (slope nearer

20Model 2 validates well: all coefficients are different from 0 in bootstrapped samples with p< 0.05.
(See Footnote 16.)

21See Gelman and Hill (2007:§5.7, §21.4). For Coda1 and Coda2.td we used Eqn. 5.9; for Coda2
we divided Eqn. 5.9 by 3 (the range of Coda2).
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to 0) as frequency is decreased. This prediction is reflected somewhat in the data
(Table 3), in that the correlation between Structure and changed is lower for
words in the lowest frequency quartile (ρ=−0.21) than for words in other quartiles
(0.21 ≤ ρ ≤ 0.39). However, ρ for the highest and lowest quartiles is not signifi-
cantly different from zero, making any conclusion about the effect of frequency on
the slope for Structure tentative. The interaction is more important for the effect
of Structure on the slope for frequency, discussed shortly.

Frequency In both models, the main effect of frequency was in the direction pre-
dicted by Phillips (lower frequency makes change more likely), but it was only sig-
nificant when prefix class was controlled for (Model 2). This agrees with Phillips’
view (1984, 2006) that it is within prefix classes that lower frequency promotes
change, rather than across all words.

However, the role of frequency is affected by structure. In Model 2, the nega-
tive main effect of frequency means that on average (Structure held at its mean),
the slope of frequency is negative. But due to the interaction with Structure,
this slope is predicted to diminish (become null), then reverse (become positive) as
Structure is increased. This pattern is seen in the empirical data (Table 3): the
correlation between frequency and changed is significantly negative for words in
Structure quartile 1 (Q1), significantly positive for words in Structure Q4, and
increases steadily from Q1 to Q4. While lower frequency does promotes change
on average, the size of this effect diminishes as the amount of change-promoting
structure increases, and reverses given enough change-promoting structure.

5 Discussion

The observed interaction between frequency and structure is intriguing in light of a
central hypothesis in the literature on frequency and lexical diffusion, that changes
can be classified by whether it lower or higher frequency that promotes change, and
that which frequency effect is seen reflects the underlying mechanism of change:
low frequency-first changes involve “lexical analysis” and tend to be analogical
changes, while high frequency-first changes involve only the surface phonetic real-
ization of words (less lexical analysis) and tend to be “physiologically motivated”
(Phillips 1998, 2006:56). This classification does not, however, make predictions
for changes with multiple motivations, or where the effect of frequency is modu-
lated by other conditioning factors.

The DSS shows both types of frequency effect, perhaps reflecting two underly-
ing sources of change. We do not have a compelling explanation for the observed
interaction between frequency and structure, in particular how structure influences
the effect of frequency. A heuristic account is that different mechanisms are at play
for words with different amounts of change-promoting structure. Words with less
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structure are being treated “analogically”: lower frequency words are more likely to
have their pronunciation modeled on similar words (i.e., disyllabic nouns). Words
with more structure are being treated “phonetically”: for high-frequency words,
there is a higher probability of stress placement being influenced by syllable weight
and final segment identity, in the same vein as the correlation between word fre-
quency and the degree of vowel reduction (see references in Bell et al. 2009). Why
structure would condition frequency effects in this way is not clear.

Aspects of the frequency/structure interaction are compatible with recent studies
of change in progress. Both types of frequency effect within a single change have
also been observed by Clark and Trousdale (2009), in the context of consonant
fronting in a variety of Scottish English. An interaction between frequency and
other factors (though not a reversal in the direction of the frequency effect) was
found by De Schryver et al. (2008) for Dutch fricative devoicing. Along with the
DSS, these cases suggest that the two-way typology of frequency effects requires
refinement to account for the more general case of frequency effects in changes
with several motivations.

6 Conclusion

This paper has examined the contributions of frequency and phonological structure
to conditioning the DSS, using multiple logistic regression models. Both frequency
and structural factors are important for predicting whether an N/V pair has under-
gone the DSS, and there is a substantial interaction between the effects of frequency
and structure. In Models 1 and 2, we found a significant effect of structure on the
likelihood that an N/V pair has undergone the DSS. In Model 2, we controlled for
the effect of prefix class, and observed a significant frequency effect. There were
no significant effects of structure or frequency in simple observed proportions (i.e.,
the mean frequency of changed vs. unchanged words), showing that understand-
ing the interaction between frequency and structure is important for understanding
the relative contribution of each, and illustrating the utility of regression models
incorporating both.
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