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1. Introduction

The relationship between children’s phonological and lexical development
has long been of interest in child language research. Of central focus has been
the notion that the phonological relationships between words determine the level
of detail needed to differentiate them in children’s developing lexicons, so that
children’s learning of words with particular phonological properties serves as an
indicator of children’s current phonological knowledge, and drives phonological
development (Beckman & Edwards, 2000; Ferguson & Farwell, 1975; Jusczyk,
2000; Metsala, 1997; Vihman, 1996). The construct of neighborhood density
(ND) has been especially prominent in this literature. ND is a property of
individual words that is traditionally defined as the number of words that differ
from the target word by one phoneme addition, deletion, or substitution (Landauer
& Streeter, 1973). One approach to ND in the early lexicon has based conclusions
about children’s early phonological abilities on the under- or overrepresentation of
dense phonological neighborhoods in the child’s lexicon as compared to the adult
lexicon. However, as we review below, making this comparison has proved to be
challenging.

In this paper we approach phonological neighborhood structure from a graph-
theoretic perspective, in which the lexicon is viewed as a complex network
(Vitevitch, 2008). We analyze lexicons drawn from corpora of child speech (CS),
child-directed speech (CDS), and adult-directed speech (ADS). Previous work
has compared child and adult lexicons along the dimension of ND, a property
of individual words. A network-based approach is novel in that it allows us
to go beyond properties of individual words to examine the global structure of
an entire lexicon, obtaining measures of overall phonological connectivity and
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structure that arise from local relationships between words. Thus, we do not
directly ask whether words from dense neighborhoods are more or less likely to
appear in children’s developing lexicons than words from sparse neighborhoods,
but rather whether children favor a lexicon that differs systematically in its global
properties from an adult lexicon, and whether caregivers present children with
favorable phonological conditions, from this perspective. This offers a fresh way
to test whether children favor lexicons that are in some way more advantageous for
acquisition and processing, relative to the adult lexicon, and it suggests techniques
for more nuanced inquiry into children’s sensitivity to phonological similarity
between words.

2. Phonological structure in the lexicon

In pioneering work, Charles-Luce and Luce (1990, 1995) compared the
distributions of neighborhoods in two child lexicons (for 5 and 7 year-olds,
respectively) to an adult lexicon. They compared the neighborhood densities of
each word in the child lexicons to the number of neighbors they would have in an
adult lexicon (based on a dictionary). The densities measured relative to the adult
lexicon were higher than those relative to the child lexicon. This comparison was
made separately for words of 3, 4, and 5 phonemes, presumably to control for
the fact that the adult lexicon contained a higher proportion of long words than
the child lexicon. They concluded that the words in children’s lexicons are more
discriminable relative to the rest of the child lexicon than they are relative to an
adult lexicon.

At the same time, their results showed that a substantial portion of words
in the child lexicons still had multiple neighbors (Dollaghan, 1994), and Coady
and Aslin (2003) suggested that it might be more relevant to compare lexicons
based on the proportion of each lexicon to which a given word was similar.
Coady and Aslin first applied the procedure used by Charles-Luce and Luce to
the word types in samples of child speech (2 children, aged 2;3–3;6), yielding
similar results relative to an adult lexicon (dictionary). They then repeated this
analysis, but divided the neighborhood densities by the total number of word types
in the relevant lexicon. The pattern of results reversed, showing that children’s
neighborhoods are denser than those of adults, when the size of each lexicon is
taken into account.

It is thus unclear whether or not children’s lexicons favor denser neighbor-
hoods than the adult lexicon. This is partly due to issues of methodology in
previous work—it is unclear how best to normalize for the size of each lexicon,
or for differences in the lengths of words between lexicons. But it may also result
from limitations of the definition of ND. Since neighbors are defined as words
differing by only one phoneme, any more distant words are counted as equally
dissimilar, e.g. state is as different from ate as is potato. By dichotomizing
phonological similarity in this way, ND may obscure meaningful variability in
word similarity at greater distances. In addition, ND is a local property of



individual words, and global structural properties that emerge over neighborhood
relationships across many words may also be relevant to lexical development.
For instance, it may be useful to know how distant words are from each other
on average, whether two words that share a common neighbor are likely to be
neighbors themselves, or whether words tend to be connected to other words with
similar neighborhood densities to their own. When the lexicon is viewed as a
network, these properties are quantified by “average shortest path”, “transitivity”,
and “assortative mixing by degree”, defined below. The approach we adopt here
uses several such metrics of global and local structure, taken from the network
theory literature.

3. Network theory

There has been significant interest in recent years among sociologists,
mathematicians, physicists, and computer scientists in data that look like a
network, broadly defined: a set of objects, with some pattern of “ties” between
individual pairs of them (Albert & Barabási, 2002; Newman, 2003b; Scott,
2000). Work in this field considers the structure and function of networks
observed in a wide range of settings, such as social networks, the internet, and
food webs. Recent work has used network theory to consider the lexicons of
different languages as phonological networks (Altieri, Gruenenfelder, & Pisoni,
2010; Arbesman, Strogatz, & Vitevitch, 2010a, 2010b; Chan & Vitevitch, 2009,
2010; Gruenenfelder & Pisoni, 2009; Vitevitch, 2008). From this perspective,
researchers can compute metrics used in network research to give insight into the
properties of a given network.

A network (or graph) is a set of nodes and a set of edges, each of which
connects a pair of nodes. In a phonological network, each word is represented
by a node, and two nodes are connected by an edge if their corresponding words
are neighbors, in the sense of ND. A node’s degree is the number of nodes it is
connected to by edges; for phonological networks, degree is equivalent to ND. A
network consists of at least one connected component, a “piece” of the network
in which a path (traversing a sequence of edges) exists between any two nodes,
but no path exists between any node in the connected component and any node
outside of it. The connected component containing the most nodes is the giant
component (GC).

A variety of metrics are used to describe different aspects of the structure
and function of complex networks; some (degree distribution, average degree)
correspond to measures traditionally used in the ND literature. We now describe
several metrics which have been used in previous work on phonological networks,
and which will be used here.

The average shortest path (ASP) is measured across all pairs of nodes for
which a path exists (that is, all pairs where both nodes are in the same connected
component). Note that this is not the same as edit distance, the minimum number
of additions, deletions, and substitutions of one phoneme required to change



one word in a pair into the other (Yarkoni, Balota, & Yap, 2008). ASP adds
the requirement that all intermediate steps in this process exist as words in the
network.

The clustering coefficient of a node is the fraction of pairs of its neighbors
which are also neighbors of each other. Here we consider the average of this
value across all nodes (henceforth simply “clustering coefficient”; CC). A closely
related quantity is transitivity; the probability across the whole network that two
nodes which are neighbors of the same node are themselves neighbors.1 In the
case of a social network where edges indicate friendship, for example, CC and
transitivity reflect the likelihood that any two friends of a given individual will
themselves be friends.

Assortative mixing by degree (AMD) is the correlation, across all edges, of
the degrees of neighboring nodes. Positive AMD indicates that edges tend to
connect nodes of similar degrees: many high-degree nodes are connected to other
high degree nodes, and many low-degree nodes are connected to other low-degree
nodes. For the friendship network example, individuals will tend to have friends
who have around the same number of friends as they do.

Phonological networks were first studied by Vitevitch (2008), who considered
the English lexicon; subsequently, Arbesman et al. (2010b) examined the phono-
logical networks of English, Spanish, Mandarin, Hawaiian, and Basque. Both
studies showed that phonological networks exhibit several distinctive properties.

First, phonological networks were found to have “small-world” properties
(Watts & Strogatz, 1998): low ASP length, compared to a random network
with the same number of nodes and average degree, but a high clustering
coefficient, relative to such a random network. Low ASP is a prerequisite for
a network to be efficiently searchable, while high CC and high transitivity imply
the network is “locally dense”. Small-world properties have been argued to be
desirable properties from the standpoint of processing, particularly if a “spreading
activation” model is assumed (Vitevitch, 2008; Arbesman et al., 2010b), and could
be beneficial for acquisition as well.

Phonological networks also have high AMD, both relative to a random
network and to other types of real-world networks. Relative to networks with
negative (or zero) AMD, networks with high AMD tend to allow more rapid
transmission of information between nodes, and tend to be relatively robust in
the sense that many nodes can be removed without greatly affecting the network’s
overall structure (Newman, 2003b). Robustness to node removal in phonological
networks was shown in simulations by Arbesman et al. (2010b).

A final finding of previous work is that phonological networks tend to
have a relatively small percentage of nodes in the giant component (35–66%
across the languages considered by Arbesman et al.), compared to many other

1CC and Transitivity reflect different ways of measuring the likelihood that any two
neighbors of a node are themselves neighbors. They can in principle differ, but pattern
together in our data.



networks observed in the literature. This is because they contain many “islands”—
connected components consisting of only a few nodes—and thus can be thought of
as consisting of a structured core and a large periphery of relatively unstructured
pieces. This raises a methodological question of whether the properties we
examine here, which are intended to represent global properties of graph structure,
should be computed for the whole graph, or for the GC alone. Vitevitch (2008)
computes them only for the GC, while Arbesman et al. (2010b) compute some
metrics for both the GC and the whole graph, and others only for the GC. In this
paper we consider all metrics computed on both the GC and the whole graph.

Previous work, then, shows that phonological networks have properties which
may be beneficial from the perspective of search and stability: low ASP, high
CC and transitivity, and high AMD. We thus call these four metrics search and
stability properties (SSPs). Linking these properties with search and stability
suggests the intuitive hypothesis that children will favor a lexicon with a larger
CC, transitivity, and AMD, and smaller ASP than the adult lexicon. Furthermore,
if the global structure of the lexicon of CDS is somehow more favorable for
acquisition relative to the ADS lexicon, as has been argued to be the case for other
aspects of CDS relative to ADS (e.g. phonetics, prosody, syntax; cf. Brodsky,
Waterfall, & Edelman, 2007; Fernald & Kuhl, 1987; Kemler Nelson, Hirsh-Pasek,
Jusczyk, & Cassidy, 1989; Liu, Kuhl, & Tsao, 2003), we might also expect CDS to
be more stable and searchable than ADS, as measured by these network properties.
We examine these hypotheses directly in the remainder of this paper.

4. Methods

In order to test these hypotheses about network structure, we extracted
lexicons from corpora of CS, CDS, and ADS, and built the corresponding
phonological networks. We then computed global network properties, including
the SSPs described above, for each of these networks, and estimated their standard
errors using a resampling procedure, allowing us to make comparisons across
networks.

4.1. Data and network construction

The CS and CDS lexicons were extracted from a large longitudinal corpus
comprising 90-minute spontaneous speech samples from 64 parent-child dyads
(approximately 1.5 million word tokens of CS and 1.9 million word tokens of
CDS; Huttenlocher, Vasilyeva, Waterfall, Vevea, & Hedges, 2007; Rowe, 2008).
Each dyad was recorded 9 times at 4-month intervals beginning at child age 14
months and ending at age 46 months. Twenty-three recording sessions (4%) were
missing due to some participants leaving the study or missing a session. Since
our goal was to compare CS, CDS, and ADS in general, we did not remove
participants with missing sessions. The parent-child dyads were selected to span
the socioeconomic and racial diversity of Chicago, except that all were from



Table 1: Corpus properties following removal of words not occurring in CMU
dictionary.

Corpus Utterances Types Mean word length

CS 263,824 6,882 4.82
CDS 519,351 12,584 5.29
ADS 32,681 10,964 6.05

monolingual English-speaking families. The network structure of the CS and
CDS lexicons from this corpus were compared to an ADS lexicon drawn from
the Buckeye corpus of adult interviews (40 speakers, 285,000 word tokens; Pitt et
al., 2007).

In the construction of all three lexicons, unlemmatized, orthographically
distinct word types were included, and associated with a string of phonemes
according to the first listed pronunciation of that word type in the CMU pro-
nouncing dictionary (Carnegie Mellon Speech Group, 1993). Word types not
listed in the dictionary were excluded. Note that this process may permit a single
pronunciation to appear twice in the lexicon, and consequently in the phonological
network, if it is associated with distinct orthographic forms; for example,
homophonic but heterographic words like to, two, and too, each contribute
separate nodes to the network, with the same neighbor-sets. On the other hand,
semantically distinct words that are both homophonic and homographic, such as
rose (n.) and rose (v.), together contribute only a single node.

Table 1 gives the number of utterances in each corpus, as well as the number
of unique orthographic word types and mean word length in phonemes after
removing word types not occurring in the CMU pronouncing dictionary. While
the ADS corpus contains far fewer utterances than the others, it includes a similar
number of types as the CDS corpus, which is somewhat less than twice the number
of types in the CS corpus.

We constructed the lexical networks over all word types, regardless of length
in phonemes, in contrast to Charles-Luce and Luce (1990, 1995), and Coady and
Aslin (2003), discussed above. In those studies, the distribution of neighborhood
densities was compared separately for 3, 4, and 5-phoneme words. In the present
study, however, we are interested in the impact of phonological connectivity
across the entire lexicon, rather than in connectivity among, e.g. 3-phoneme
words. Concepts like ASP are defined over the shortest paths between each pair
of nodes, including nodes of different lengths (provided they are in the same
component). There is no reason to expect that ASP for the whole network would
be similar to ASP over subsets of the network that are uniform in word length, and
we argue that, to the extent that global connectivity is related to lexical acquisition
or processing, the global measure is most relevant.



4.2. Jackknife resampling

For each lexical network, it is possible to compute all global network
properties of interest (ASP, CC, etc.). However, as in most corpus-based work,
we view the base of data from which the networks are constructed as inherently
stochastic. It is therefore important to estimate the amount of variability that
each metric is expected to exhibit in each network, as a result of the random
process assumed to be generating the corpus on which the network is based. Such
estimates allow us to judge whether differences between the network properties of
the three corpora are greater than could reasonably be expected to arise by chance
in samples of the size that we have.

In our case, we have three finite samples (the corpora), together with a set
of sample statistics (network properties), which depend on the samples in some
complicated way. We wish to estimate the sampling variance of those statistics on
the basis of the single sample available to us. One general method of obtaining
such estimates is to use a jackknife resampling procedure (e.g. Efron & Tibshirani,
1993). The sample is divided into a set of blocks, each of which is removed from
the sample in turn, each time recalculating the statistics of interest on the resulting
truncated sample. One can then estimate the sampling variances of the statistics
by examining how much their values deviate during this process from what would
be obtained on the entire, untruncated sample. In order to apply this procedure to
our data, we divide each corpus into 100 equal blocks. We then remove each block
in turn, generate the resulting network, compute its properties, and compare the
resulting values to those obtained on the network derived from the entire corpus.
The error bars in Figure 2 (below) indicate twice the standard errors estimated by
this method.

5. Results

We begin our comparison by examining the degree distribution, which is
closest to the earlier approaches of Charles-Luce and Luce, and Coady and Aslin.
For each of the three lexicons, Figure 1 plots the empirical degree distribution, and
the fitted probability distribution over node degrees.2 Note that this includes all
words in each lexicon (that appear in the CMU dictionary), without restricting
length in phonemes or syllables. The CS and CDS lexicons show a higher
proportion of nodes with high degree, both from visual inspection of the degree
distributions, and by comparison of edge-to-node ratios for the three lexicons, both
within the GC and in the whole network (Figure 2). Thus, CS and CDS appear to
rely on a denser lexicon than ADS, when normalized for the size of the lexicon.
Since the edge-to-node ratio is simply one half the mean ND, this makes our
results consistent with those of Coady and Aslin (2003), in which neighborhood

2Fitted distributions are truncated power laws, following Arbesman et al. (2010b),
computed using methods from Clauset et al., (2009). All fits were highly significant
(p < 10−10), relative to a simple power law.
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Figure 1: Empirical (dots) and fitted (lines) degree distributions for CS, CDS, and
ADS.

sizes were divided by the number of words in each lexicon. However, we note
that it is not clear how useful edge-to-node ratio and the degree distribution are
for comparing lexicons of different sizes, since the maximum values of the edge-
to-node ratio and the maximum degree increase as network size increases.

Nonetheless, the degree distribution, and also the relative size of the GC,
which is larger in CS and CDS than in ADS (Figure 2), suggest that the global
network structure of CS is much more similar to that of CDS than it is to ADS.
This pattern of similarity between CS and CDS also holds for search and stability
properties (ASP, CC, transitivity, and AMD), to which we now turn.

Figure 2 shows the results for the search and stability properties, measured for
the entire network as well as in the GC alone. These show two general patterns.
First, as above, the values for CS and CDS tend to be much more similar to each
other than to ADS, and second, they suggest that CS and CDS networks are in
general more stable and more efficiently searchable than ADS.

The higher values of CC and transitivity in CS and CDS, which are
considerably greater than those in the ADS lexicon, reflect the higher likelihood
that two neighbors of any given target word will themselves be neighbors in CS
and CDS than in ADS. As described above, this indicates that the CS and CDS
lexicons are more “locally dense” than ADS. Similarly, the values for AMD show
a tighter correlation in the degree of neighboring nodes in CS and CDS than in
ADS, with CDS measuring slightly higher than CS as well. In other words, the
tendency for words to have neighbors with similar degree to their own is strongest
in CS and CDS, and weakest in ADS. This suggests that CDS and CS have more
stable phonological networks in the sense that removing nodes will have the least
impact on global structure (as measured by metrics such as ASP and GC%) for
those lexicons, given the connection between robustness and high AMD discussed
above. Finally, the values for ASP contrast slightly with this pattern, in that words
tend to be least distant from each other in the CS network, and it is the networks
from CDS and ADS that are most similar to each other. Of all pairs of nodes
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estimated by jackknife resampling.



between which a path exists, those paths are shorter, on average, in CS than in
the other two lexicons. Note that in the case of ASP it is the smaller values that
indicate more efficient searchability, in contrast to the other metrics.

6. Discussion

In general, the phonological networks analyzed here exhibit properties that
are consistent with stable and searchable networks. Importantly, the higher
values of CC, transitivity, and AMD in CS and CDS, and lower ASP in CS,
suggest that children’s phonological networks are more stable and more efficiently
searchable than the network of ADS, and that they are very similar to the
network of the CDS that they are exposed to. Analyzing children’s productive
and input lexicons as phonological networks thus supports the hypothesis that
the integration of words into a global network structure, and the functioning of
that structure during language use, are important determiners of early lexical
development. This includes the notion that children favor a lexicon whose global
phonological structure allows for efficient functioning during speech production
and comprehension. Note that this hypothesis differs substantially from the notion
that dense or sparse neighborhoods are favored in children’s lexicons (or CDS)
through the effect of ND on how easily individual words can be acquired.

While intuitive from the standpoint of network theory, interpreting the present
findings in terms of searchability and stability is dependent on a theory of
children’s lexical acquisition and processing mechanisms that allow them to
exploit the network properties we have discussed. In terms of processing, the
rapid spread of information in networks with high CC, transitivity, and AMD, and
short ASP presuppose the use of some search algorithm(s) for which the observed
network conditions are favorable. This seems most compatible with spreading
activation models of lexical processing, which are already being explored from a
network perspective in adults (e.g. Altieri et al., 2010; Chan & Vitevitch, 2009,
2010).

The helpfulness of these properties in acquisition also depends on the
assumed theory of word learning. However, the present paper only considers the
cumulative state of the network at a single point in time, and as pointed out by
Gruenenfelder and Pisoni (2009), this does not allow us to infer the mechanism(s)
underlying the growth of the network. This thinking thus remains speculative, but
the present results suggest a longitudinal hypothesis; namely, that children will
gravitate towards a stable and searchable lexicon fairly quickly. We are currently
using the longitudinal nature of the CS and CDS corpora analyzed here to explore
the development of network structure, by examining children’s productive and
input lexicons at different ages. This may be helpful in two ways. First, it allows
us to examine the specific properties of words added at each time point, relative
to both the child lexicon at the previous time point and to the input lexicon. This
would help clarify how network structure impacts the acquisition of words with
particular properties. Second, the trajectories of the individual network properties



would shed light on which properties are favorable early in development.
Comparison of the developmental trajectories of network metrics in CS and

CDS over the first 5 years of life may also illuminate how children’s early phono-
logical abilities constrain acquisition. Since the children’s aggregated lexicons
across all time points were very similar to their input (CDS), the present results do
not allow us to distinguish hypotheses about children’s phonological preferences
from the possibility that children simply acquire a network that veridically reflects
their input, which may or may not present favorable phonological conditions.
On the other hand, CDS might be shaped by children’s abilities, either because
caregivers have some sense of what sound patterns are difficult for children, or
because they simply favor words that the child understands. In the latter case,
CDS might be better seen as an indicator of children’s receptive lexicons, rather
than their input (see Coady & Aslin, 2003). However, if the network properties of
CS and CDS show different trajectories over time, we might begin to tease apart
these hypotheses.

7. Conclusion

The present study reveals a striking similarity in the network properties of the
CS and CDS lexicons, and the pattern of results may imply greater stability and
searchability in CS and CDS than in ADS. This is important for two reasons. First,
it suggests that the phonological conditions presented by the CDS lexicon are
favorable for lexical acquisition, perhaps because caregivers actively tailor their
lexical choices to present such conditions, or because they favor words that the
child appears to understand. Second, it suggests that children favor a lexicon with
certain global phonological properties, defined over local similarity relationships
between words. We conclude that the global perspective offered by a network-
based approach allows us to ask more general questions about what kind of lexicon
presents favorable phonological conditions for children’s speech comprehension
and production as well as for word learning.
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