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Introduction

•  What does phonetic/phonological variation in 
individuals look like over time?
– dynamics

•  Causes of dynamics?

•  Relationship to community-level sound change?



Variation in individuals over time

•  Short term:  phonetic imitation/convergence/
accommodation   ���
(Giles et al., 1991; Goldinger,1998; Pardo, 2006; Babel, 2009...)

– Widespread, robust
•  Most variables (VOT, vowels, …) , most speakers

– Mediated by social, linguistic factors 
– Minutes-days

•  Hypothesis: Short-term accommodation/
imitation a major source of language change���
(Neogrammarians; Pardo, 2006; Delvaux & Soquet, 2007)



Variation in individuals over time

•  Long term���
(Munro et al., 1999;  Harrington et al., 2000; Evans & Iverson, 2007; Siegel, 2010)

–  Panel studies (Sankoff, 2005, 2012)
•  Individuals stay in same speech community

– Dialect change/acquisition/shift (Siegel, 2010)
•  Individuals move

– Measure at a few time points years apart

•  Huge variation among speakers, variables
–  Adults: Stability the norm, some change significantly



What is the relationship between the different 
patterns seen in short-term and long-term dynamics? 



A “medium term” experiment

•  Months
•  Trajectories of
– Phonetic & phonological variables
–  (Social dynamics)

•  Track how variables change between endpoints
– Longitudinal variation

•  Link between short and long term.



Big Brother

•  Reality TV program from the Netherlands
•  Exported to UK, US, Germany…



Big Brother UK: Season 9

•  Contestants spend 3 months in BB house
•  Each week one is voted off ���

(+ sporadic additions)
•  Last remaining wins £100,000

•  No outside contact: closed system
•  Continuous surveillance
– Cameras in every room
– Wearable microphones



11	  na%ve	  speaker	  contestants	  on	  for	  >50	  days:	  
≈	  80%	  of	  data	  



Data

•  Live 24-hour feed (!)

•  Daily produced episodes (1 hour)
–  Easier to obtain



•  Speech data from diary room clips
– Talk to Big Brother, semi-spontaneous (c.f. Buckeye)
– Constant recording environment, social context.

– ≈10.5 hours



Speaker origin

•  England: 3 northern, 3 southern, ���
1 W midlands

•  Scotland: 1
•  Wales: 1

•  US/UK: 1
•  Australia: 1



Analysis

•  High level: ���
for each variable

– Determine ���
time dependence���
within individual ���
speakers

– Controlling for ���
static factors
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•  Primary cue to voicing contrast, for stop consonants



Data

•  Procedure:
– Semi-automatic measurement

1.  Automatic: AutoVOT ���
(Keshet et al. 2014; Sonderegger & Keshet 2012)

2.  Manual correction
–  Including exclusions (fricatives, deleted, … )

–  vs. fully manual measurement:
•  20-30x faster 

•  very similar measurements*

hFps://github.com/
mlml/autovot	  

*	  Auto/manual	  reliability	  same	  order	  as	  intertranscriber	  reliability	  



Data

•  Which stops?
–  “VOT” complex in spontaneous speech

•  Strict definition: lose >50% possible tokens
•  Loose definition: include tokens w/o closure, etc.

– Our choice: loose
•   positive VOT, ≈ any stop with a burst
•  ⇒ VOT ≈ burst duration
•  (voicing duration, neg. VOT not examined)

•  All word-initial stops 
–   can, burning, today, *today



Data

•  Dataset:
– Voiced: 10.6k tokens (709 words)
– Voiceless: 10.1k tokens (893 words)

– 11 speakers (>50 days, native)
•  800-3300 tokens/speaker
•  32-80 clips/speaker

0+	  clips	  per	  	  
speaker	  per	  day	  

(phonologically)	  



Analysis

•  Many static factors affecting VOT:

– Speaking rate (slower > faster)

– Place of articulation (p ≤ t ≤ k)

– Following segment (C > V)

– Following V height (high > non-high)

– Stress (stressed > unstressed)

– Word frequency (higher > lower)

(Allen	  et	  al.,	  2003;	  Baran	  et	  al.,	  1977;	  Crystal	  &	  House,	  1988;	  	  KlaF,	  1973,1975;	  Lisker	  &	  Abramson,	  1965;	  Miller,	  1986;	  
Miller	  et	  al.,	  1986;	  McCrea	  &	  Morris,	  2005;	  Morris	  et	  al,	  2008;	  	  Nearey	  &	  Rochet,	  1994;	  Ohala,	  1981;	  Port	  &	  Rotunno,	  
1979;	  	  Randolph,	  1989;	  Schertz	  2013;	  Stuart-‐Smith	  et	  al.,	  in	  press;	  Summerfield,	  1975;	  VanDam	  and	  Port,	  2005;	  	  	  Volai%s	  
and	  Miller,	  1992;	  Yao,	  2009;	  Zue,	  1976…)	  
	  



Analysis 

•  Time dependence: no a priori hypothesis!
•  Possibilities:
– None (null hypothesis)

– By-day variability

– Time trend

– Time trend and���
by-day variability

c.f.	  apparent-‐%me	  
hypothesis	  	  
(no	  change	  over	  lifespan)	  



Analysis: models

1.  Build 2 linear mixed-effect models ���
(voiced, voiceless) of static factors, ���
across all speakers
– Response: log(VOT)
– Fixed effects: static factors (+ interactions)
– Random effects: (speaker, word) x (intercept, slopes)

–  Residuals of these models : ���
normalized VOT for speaking rate, context, etc.



2.  For each speaker, for voiced/voiceless subset, 
four models of time dependence
–  Response: normalized VOT

–  Generalized additive mixed model 
–  By-word random effect
–  Time dependence: one of

smooth	  func%on	  of	  Day	  

By-‐clip	  random	  effect	  

GAMMs:	  Wood	  2006	  



Analysis: models

•  Choose best of four models using Akaike 
Information Criterion (AIC)

•  ⇒ one model of time dependence for
– Speaker 1, voiceless stops

– Speaker 1, voiced stops
–  (etc.)



Results: predicted time dependence
speakers	  
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•  By-day variability (ribbons): all cases
•  Time trends (non-horizontal lines): 50% of cases



•  No clear convergence
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Results: by-day variability

•  Time dependence is ubiquitous
–  Is it important?

•  By-day variability effect size :
– Voiced: 43-180% / 8-13 ms
– Voiceless: 13-48% / 7-26 ms

•  Compare:  place of articulation 
(strongest static factor)

– Voiced: 9 ms
– Voiceless: 27 ms

Predicted	  diff	  between	  +-‐1σ	  days	  

By-day fluctuations are of similar
magnitude to contextual effects



•  Compare: short-term voiceless VOT shifts���
(Nielsen, 2011; Shockley et al., 2004)

– Shadowing: 12 msec (avg)
–  Imitation: 0-30 msec

By-day fluctuations are of similar magnitude
 to accommodation effects



•  Compare: magnitude of voiced/voiceless VOT 
difference (primary cue to contrast)
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Magnitude of time dependence never sufficient to endanger contrast

Results: voiced and voiceless



Results: voiced and voiceless

•  Change in sounds, or voicing contrast?
– Do voiced, voiceless change together?



Results: voiced and voiceless predictions
•  (1 point = 1 clip)
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Variable 2: coronal stop deletion

•  Word final t/d variably deleted in consonant 
clusters
– wan’~want , slep’~slept

– bes’~best

(Labov	  et	  al.,	  1968;	  Wolfram,	  1969;	  Fasold,	  1972;	  Labov,	  1975;	  Wolfram	  &	  Chris%an,	  1976;	  Guy,	  
1980,	  1991;	  Neu,	  1980;	  Labov,	  1989;	  Guy	  &	  Boyd,	  1990;	  Santa	  Ana,	  1992,	  1996;	  Bayley,	  1994;	  
Reynolds,	  1994;	  Roberts,	  1995,	  1997;	  Patrick,	  1999;	  Schreier,	  2005;	  Tagliamonte	  &	  Temple,	  2005;	  
Hazen,	  2011	  …	  )	  



Data

•  Annotation
– Spectral cues + auditory
– 9 labels (burst, glottal stop…) collapsed to 

present/absent���
(c.f. Temple, 2014)

•  Dataset
–  11.6k tokens, 538 types

–  11 speakers
•  551-1174 tokens/speaker



Analysis

•  Static factors affecting CSD rate:
–  Following context (t/d > consonants > vowels ~ pauses)

–  Preceding context (Tagliamonte & Temple, 2005)

•  /s/ > liquids > nasals > stops > sibilants

–  Frequency (higher > lower)

–  Speaking rate (higher > lower)

– Voicing (bust > want)

– Morphological class (mist > missed)



Analysis: models

•  For each speaker, build mixed effects logistic 
regression models
– Response: t/d realization

– Accounting for static factors
– Different types of time dependence

•  Choose best one (AIC)
•  (similar procedure to VOT)

•  ⇒ one model of time dependence per speaker



Results: predicted time dependence

•  By-day variability (ribbons): 36% of cases
•  Time trends (non-horizontal lines): 73% of cases
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Results: time trends
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•  Downward trend (more casual)?
•  No clear overall convergence



Results: by-day variability
•  Effect size:
–  8/12 speakers: 0
– Rest: 1.9-2.6x increase in CSD odds

•  ≈ 16-24% ``  ``  CSD rate

•  Compare: strongest static factors
–  Speaking rate: 5.0
–  Following context: 2.9

•  Compare: short-term shifts 
– No imitation studies to compare to, but..
–  by-day fluctuations similar magnitude to���

style-shifting effects ���
(Hazen, 2011)

By-day fluctuations smaller than
contextual effects



Variable 3: vowel formants

1.  GOOSE

2.  TRAP′

3.  STRUT

(Ferragne	  &	  Pellegrino,	  2010;	  Wells,	  1982)	  



Data

•  Semi-automatic F1, F2 measurement 
1.  FAVE suite (Rosenfelder et al, 2011)

2.  Manual correction: ���
Plotmish ���
(github.com/mlml/plotmish)

Transcrip%on	   Forced	  alignment	   Formant	  measurement	  



Data

•  Dataset:
– GOOSE: 2.9k tokens
– TRAP′: 2.3k tokens

– STRUT: 4.9k tokens

•  Exclusions:
– Reduced 

– Highest-freq words (e.g. and)
–  (etc.)



Analysis

•  Static factors affecting F1, F2:
– Preceding consonant
– Following C

•  Manner, place, voicing

– Others:
•  Can’t model due to sparse data

(e.g.	  Stevens	  &	  House,	  1963;	  Hillenbrand	  et	  al.,	  2001)	  



Analysis: models

•  Similar to VOT
•  For each vowel/formant/speaker, build linear mixed-

effect models:
– Response: normalized F1 or F2
–  Static factors

– Time dependence: one of

•  Pick best model (AIC): one model of time dependence for
–  Speaker 1 GOOSE F1, GOOSE F2, …

–  (etc.)



Results: predicted time dependence

GOOSE TRAP STRUT

Any time dependence 91% 91% 100%

By-day variability 91% 73% 91%

Time trend 55% 73% 64%



Results: time trends
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•  GOOSE

•  Convergence in F1?
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Results: time trends
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•  TRAP

•  No overall convergence
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Results: time trends
•  STRUT

•  No overall convergence
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Results: by-day variability
•  Effect size:
– F1: 0.13-0.94 
– F2: 0.11-0.72

•  Compare: strongest static factors
– F1: 0.26
– F2: 1.04 

•  Compare: short-term shifts 
– Babel (2011) vowel imitation: most subjects < 0.15

By-day fluctuations similar magnitude to contextual effects

±1σ	  normalized	  formant	  

By-day fluctuations similar magnitude to accommodation effects



Discussion

•  What are medium-term phonetic/phonological 
dynamics?

•  Relationship to short-term, long-term 
dynamics?
–  Including community-level change

•  Causes?  
– Convergence?



Medium-term dynamics

•  Variability over time of sounds in individuals is 
the norm
– 82-100% of speakers

– Reject null hypothesis

•  More variability detected for larger dataset
– 2x larger than Sonderegger (2012): greater power

– ⇒ we’re likely underestimating



•  By-day variability is very common
– Vowels, VOT: 70-100%
– CSD: 35%

•  Longer-term time trends less common
– Vowels, VOT: < BDV
– CSD: > BDV

•  Hypothesis: by-day variability in phonetic 
parameters is the norm

Discrepancy	  makes	  sense	  if	  BDV	  due	  to	  	  
accumulated	  accommoda%on	  effects	  

Medium-term dynamics



Medium-term dynamics

•  Overall: pronunciation of sounds fluctuates on 
timescale of days-months
– VOT: also contrasts

•  Important?
– Effect size comparable to:

•  Coarticulation, speaking rate

– But: not large enough to endanger contrasts
•  VOT

•  More generally: hypothesis for future work



Short, medium, long

•  Medium-term change
– Qualitatively different types of dynamics
– High inter-speaker, variable variation
– Robust: some time dependence

•  Previous work:
– Short-term: accommodation robust, widespread
– Long-term: highly variable, majority don’t change

•  Medium-term is in between



•  Mismatch between short and long-term 
dynamics

•  Proposal:
– Speakers robustly vary on timescale of days

•  (In part) due to accommodation effects persisting: ���
 c.f. similar effect sizes

– But these fluctuations often don’t accumulate into 
longer-term trends
•  Fits with relatively rarity of change over lifespan



Sources of dynamics

•  Why these dynamics?
– Huge intervariable, -speaker differences

•  Mostly still unknown

•  Across variables: no clear overall convergence!
– But…



Luke and Rebecca

•  Enemies → couple (≈ day 30)
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•  Convergence, across variables
–  (?)
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Michael and Rebecca

•  Best friends in house, from early on
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(very	  similar	  throughout	  show)	  



•  Convergence across variables (?)

F1 F2

−0.25
0.00
0.25
0.50

−0.3
0.0
0.3
0.6
0.9

−0.6
−0.3

0.0
0.3
0.6

TR
AP

STRU
T

G
O

O
SE

0 25 50 75 0 25 50 75
Day

N
or

m
al

ize
d 

fo
rm

an
ts



Darnell, Mohamed, Rex

•  Form an “outsiders” group from early on
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•  Convergence across variables except CSD
–  (?)
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Sources of dynamics

•  Big Q: what explains observed dynamics? 

•  Little-no evidence for convergence across 
speakers

•  But: suggestive evidence for convergence 
within socially-meaningful subsets of speakers!
– Especially during last part of show ���
⇒ fewer people, more concentrated interactions



•  Consistent with a role for accommodation 
effects in language change���
(Neogrammarians on)

– But, socially-mediated (Babel, 2011)

•  For now, post-hoc/qualitative!
– Ongoing work: hypotheses based on social 

interaction data (20k obs)

•  Other future work:
–  Is “grammar” changing, or just phonetic 

parameters?



•  Other future work:
– High variability ⇒ much more study needed of 

dynamics in individuals

– Many variables
– Trajectories!
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