The SPADE project: large-scale analysis of a spoken language across space and time

Morgan Sonderegger, The SPADE Consortium

LSCP Language Group, Paris 26 Mar, 2019

investigators

SPeech Across Dialects of English

http://spade.glasgow.ac.uk/

Postdocs

SPeech Across Dialects of English

Project manager + data

Software development

http://spade.glasgow.ac.uk/

SPeech Across Dialects of English

 Software for large-scale automated analysis of speech datasets

- public & private
- Focus: sociolinguistic data

Project goals

 Case studies: investigate how "English" varies in time and space

Motivation

- Huge amount of annotated speech data exists
 - Corpora,
 At least orthography + audio
 academic labs...

Motivation

- Huge amount of annotated speech data exists
 - Corpora,
 academic labs,
 fieldwork...
- Across
 - Languages/dialects
 - Speech styles
 - Time
- + ever-better (semi)-automatic speech measurement tools

Motivation

- Great potential for speech analysis for different purposes
 - Bigger haystacks, same-sized needle...
 - ... need a bigger magnet

- Requires software for unified corpus analysis
 - Integrating speech datasets
 - Querying across them
- SPADE focus: sociolinguistic, phonetic datasets

Barriers

- Speech datasets:
 - Large
 - Complex
 - Diverse formats
- Access to many speech datasets

- Costly or ethically restricted

Most sociolinguistic, laboratory data

Switchboard: \$3000+

 Result: requires lots of specialized code, €€, effort, computational power

Software goals

- Scalable & fast
- Require minimal technical skill from user
- Abstraction away from dataset format
- Querying dataset without access to raw data

 → Easier large-scale studies using speech corpora

- To motivate structure of software:
 - think about steps researcher goes through to do a (speech) corpus study
 - Running example: vowel formants

• Setting: sociolinguistic study, or laboratory phonology, phonetics, etc.

Raw data

Analysis

Raw data

Analysis

I. Process raw data

2. Make measures

3. Find relevant tokens

4. End up with usable spreadsheet

SpkrID	Age	Gender	F1	F2	V_dur	C_left	C_right	Phone	Word
M01	35	Μ	340	1410	0.11 s	[g]	[s]	UW	goose
F01	22	F	480	1050	0.15 s	[r]	[r]	UW	truer

Data file(CSV)

I. Process raw data

2. Make measures

3. Find relevant tokens

4. End up with usable spreadsheet

e.g. UW (GOOSE) tokens, stressed syllables > 50ms

Raw data

Analysis

Why 'Integrated' Speech Corpus ANalysis?

ISCAN

- -Practical reasons
 - Technical skill
 - Time/duplication of effort
 - Availability
- -Methodological/theoretical reasons
 - <u>Standardized</u>, customizable linguistic measures
- much more difficult with I + corpora...

ISCAN: A SYSTEM FOR INTEGRATED PHONETIC ANALYSES ACROSS SPEECH CORPORA

Michael McAuliffe^a, Arlie Coles^a, Michael Goodale^a, Sarah Mihuc^a, Michael Wagner^a, Jane

Proc. ICPhS 2019

Stuart-Smith^b, Morgan Sonderegger^a

- Implementation
 - Python API
 - Graphical User Interface

https://github.com/MontrealCorpusTools/iscanspade-server

https://iscan.readthedocs.io/

• (show GUI here)

- Note:
 - Server-client architecture enables analysis without access to raw data
 - Permissions system controls who can see/hear tokens
 - Can be installed on web server (default) or personal computer

SPADE: datasets

- 43+ datasets, 4 countries, 115 years
- heterogeneous corpus formats
- public and private

SPADE: datasets

To date:

- Acquired: 20
- Measurements generated: 10
- ~ 10 dialect regions
 - ~500 hours (?)

SPADE: ethics and credit

- For private datasets (data guardians): ethics complex: GDPR + US laws
- Data transfer agreement
 - data use in keeping with original permissions, as far as is possible
- We welcome new datasets!

- "SPADE consortium" author on everything
- Datasets of measures -> data guardians at end of project

/s/-retraction in English

 /s/ → [ʃ]-like sound in /str/ – string, street

- Sound change, varies by dialect:
 - Ex: London, Philadelphia, NZ English
 - but not others, e.g. RP, Australian English (e.g. Baker et al, 2011; Stevens and Harrington, 2016)

• varies by individual speaker within dialect

Research questions

- QI: what is the evidence for /s/-retraction across English?
- Q2: Do English dialects show a dichotomous pattern of /s/-retraction
 - or a continuum?
- Received wisdom: there are "retracting"/nonretracting dialects and speakers

SPADE Sample for this study: New World

Canada ICECAN Corpus 28: 18m, 10f

Northern Cities, e.g. New York, Philadelphia Santa Barbara Corpus 20: 9m, 11f

Columbus, Ohio Buckeye Corpus 40: 20m, 20f

West coast/California Santa Barbara Corpus 46: 20m, 26f

Raleigh, North Carolina Raleigh Corpus 101: 50m, 51f www.google.com/maps/

235 speakers

SPADE Sample for this study: New World

Canada ICECAN Corpus 28: 18m, 10f

West coast/California Santa Barbara Corpus 43: 20m, 23f

reported to show /s/-retraction

Raleigh, North Carolina Raleigh Corpus 101: 50m, 51f www.google.com/maps/

235 speakers

Columbus, Ohio Buckeye Corpus 40: 20m, 20f

York, Philadelphia Santa Barbara Corpus 19: 8m, 11f

Northern Cities, e.g. New

SPADE Sample for this study: Old World

New World: US and Canada

Highlands, Islands and North SCOTS Corpus 54: 22m, 34f

West, e.g. west coast SCOTS Corpus 38: 19m, 19f

East, e.g. Edinburgh SCOTS Corpus 22: 11m, 11f

Glasgow Sounds of the City 70: 35m, 36f

www.google.com/maps/

185 speakers

Data

- All instances of stressed, word-initial /s/
- Acoustic measures: peak, spectral Centre of Gravity (CoG)
 - I-I6 kHz
 - Middle 50%
- Data cleaning
- N = 76,440

Prediction: /s/ > /str/ > /ʃ/

ISCAN usage

Results

• /str/ shows substantial variation across dialects

N = 76,440

N = 76,440

In Scottish and Canadian dialects, smaller differences between /str/ and /s/

/s/ is lower in frequency overall.

/s/-retraction in individuals within dialects

/s/-retraction in individuals within dialects

non-retracting pattern in individual speakers
 str

 in West US and Northern Cities dialects

S

/s/-retraction in individuals within dialects

Both retracting and non-retracting patterns seen in some individuals in all dialects.

Discussion

- QI: what is evidence for /s/ retraction across English?
 - Some dialects show retraction of /str/
 - Large differences by dialect and by country
 - Impression of "/s/-retraction" depends on which dialects are considered
- Q2: continuum vs. dichotomy in /s/-retraction
 ?
- Scaling up analysis across dialects, with consistent measures, allows identification of new patterns

Study 2: vowel formants

 Influential hypothesis from sociolinguistics: (Labov, 1994) Mielke et al. *Proc. ICPhS 2019*

Intraspeaker variation in vowel production ~
 same axis as diachronic change in community

• Intuitively plausible, but unchecked

• (go to <u>poster</u>..)

Thanks!

• SPADE Team, especially

 Jane Stuart-Smith, Michael McAuliffe, James Tanner, Vanna Willerton, Jeff Mielke

• MCQLL lab RAs

– Michael Goodale, Arlie Coles, Elias Stengel-Eskin

• Funding

– Digging Into Data, SSHRC, NSERC

