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A discriminative large-margin algorithm for automatic measurement of voice onset time (VOT) is

described, considered as a case of predicting structured output from speech. Manually labeled data

are used to train a function that takes as input a speech segment of an arbitrary length containing a

voiceless stop, and outputs its VOT. The function is explicitly trained to minimize the difference

between predicted and manually measured VOT; it operates on a set of acoustic feature functions

designed based on spectral and temporal cues used by human VOT annotators. The algorithm is

applied to initial voiceless stops from four corpora, representing different types of speech. Using

several evaluation methods, the algorithm’s performance is near human intertranscriber reliability,

and compares favorably with previous work. Furthermore, the algorithm’s performance is

minimally affected by training and testing on different corpora, and remains essentially constant

as the amount of training data is reduced to 50–250 manually labeled examples, demonstrating

the method’s practical applicability to new datasets. VC 2012 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4763995]
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I. INTRODUCTION

Huge corpora of speech, both from laboratory and natu-

ralistic settings, are becoming increasingly available and easy

to construct, and promise to change the questions researchers

can ask about human speech production. However, this prom-

ise depends on the development of accurate algorithms to

quicken or replace manual measurement, which becomes

infeasible for large corpora. With a few important exceptions

(such as pitch and vowel formants), such algorithms do not

currently exist for most quantities which are widely measured

in phonetic research. This paper describes an automatic mea-

surement algorithm for perhaps the most widely measured

consonantal variable, voice onset time (VOT). VOT, the time

difference between the onset of a stop consonant’s burst and

the onset of voicing in the following phone, is an important

perceptual cue to stop voicing and place. It is measured in

many clinical and research studies every year, requiring many

transcriber hours; for example when studying how communi-

cation disorders affect speech (Auzou et al., 2000) or how lan-

guages differ in the phonetic cues to stop contrasts (Lisker

and Abramson, 1964; Cho and Ladefoged, 1999).

There have been a number of previous studies proposing

algorithms for automatic VOT measurement. Previous work

has used automatic measurements for speech recognition

tasks (Niyogi and Ramesh, 1998, 2003; Ali, 1999; Stouten

and van Hamme, 2009), phonetic measurement (Fowler

et al., 2008; Tauberer, 2010), and accented speech detection

(Kazemzadeh et al., 2006; Hansen et al., 2010). Some stud-

ies, like ours, focus largely on the problem of VOT measure-

ment itself, and evaluate the proposed algorithm by

comparing automatic and manual measurements (Stouten

and van Hamme, 2009; Yao, 2009; Hansen et al., 2010; Lin

and Wang, 2011). Our approach differs from all previous

studies except one (Lin and Wang, 2011) in an important as-

pect. Instead of using a set of customized rules to estimate

VOT, our system learns to estimate VOT from training data.

To replace manual measurement, we believe that an

automatic VOT measurement algorithm should meet three

criteria. Both because the burst and voicing onsets are often

highly transient, and because the effects of interest (e.g.,

VOT difference between two conditions) in studies using

VOT measurements are often very small, the algorithm

should have high accuracy by the chosen measure of per-

formance. The cues to the burst and voicing onset locations

vary depending on many factors (speaking style, speaker’s

native language), and different labs have slightly different

VOT measurement criteria. To account for such variation in

the mapping between spectral/temporal cues and labeled

VOT boundaries, the algorithm should be trainable: it

should learn to measure VOT based on labeled data, and

should perform well on diverse datasets. To meet the goal of

replacing manual measurement, it should also be adaptable
to a new dataset with little effort (i.e., training data).

a)We dedicate this article to the memory of Partha Niyogi.
b)An earlier version of some work presented in this paper was published as

“Automatic discriminative measurement of voice onset time” in Proceed-
ings of Interspeech-2010 (Sonderegger and Keshet, 2010). The current

paper reports a much larger set of experiments, which are performed on a

larger number of datasets. In addition, all non-experimental sections are

either new to this paper or have been substantially expanded and revised.
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This paper proposes a supervised learning algorithm meet-

ing all three criteria. The algorithm is trained on a set of man-

ually labeled examples, each consisting of a speech segment of

an arbitrary length containing a stop consonant, and a label indi-

cating the burst onset and the voicing onset, which we denote

an onset pair. At test time the algorithm receives as input a

speech segment containing a stop consonant, and outputs an

onset pair and its corresponding VOT. The goal of the algorithm

is to predict VOT as accurately as possible on unseen data.

Our algorithm belongs to the family of discriminative

large-margin learning algorithms. A well-known member of

this family is the support vector machine (SVM). The classi-

cal SVM algorithm assumes a simple binary classification

task, where each input is of fixed length. The task of predict-

ing VOT is more complex: the input is a speech segment of

arbitrary length, and the goal is to predict the time between

two acoustic events in the signal. Our algorithm is based on

recent advances in kernel machines and large margin classi-

fiers for structured prediction (Taskar et al., 2003; Tsochantar-

idis et al., 2004; Shalev-Shwartz et al., 2004). It maps the

speech segment along with the target onset pair into a vector

space endowed with an inner product. The vector space con-

tains all possible onset pairs, and during training the algorithm

tries to find a linear classifier which separates the target onset

pair, as well as all “nearby” onset pairs (in terms of the cost

function), from all other possible onset pairs in this vector

space. At test time, the algorithm receives unseen speech seg-

ments. Each segment is mapped to the same vector space, and

the most probable onset pair (and hence VOT) is predicted.

For this method to work and achieve high accuracy, the

feature set must induce a vector space in which the target

onset pair is both distinguishable and separable from other

onset pairs. We achieve this by manually crafting a set of fea-

tures which are informative about the precise locations of the

burst and voicing onsets, and which tend to take on higher val-

ues for target onset pairs than for other onset pairs. The fea-

tures leverage knowledge about how humans annotate VOT:

using a variety of cues based on the spectrum, the waveform,

and the output of speech processing algorithms (such as pitch

trackers). We note that the feature sets typically used in

speech recognition (e.g., MFCCs, PLPs) are not adequate for

VOT measurement, since their time resolution is too coarse to

accurately detect highly transient events such as burst onsets.

Another factor that controls the accuracy of the algo-

rithm is the cost function used to evaluate how good a pre-

dicted VOT is, relative to its target value. Discriminative

learning algorithms aim to minimize some measure of per-

formance or cost function. The classic SVM, for example, is

designed to minimize the zero-one loss function during train-

ing (i.e., the number of incorrect classifications). Our algo-

rithm aims to minimize a special cost function, which is low

if the predicted VOT is close to the manually measured VOT

and high otherwise. The function also does not penalize small

differences between predicted and labeled VOT values dur-

ing training, taking into account the fact that some measure-

ment inconsistency (within or across annotators) is expected.

We evaluate our algorithm’s accuracy in experiments on

four datasets, using several methods to evaluate the algo-

rithm’s predictions relative to manual measurements. The

datasets range across very different types of speech, testing

the algorithm’s applicability in different settings. To test the

algorithm’s adaptability to novel datasets where little or no

labeled data is available, we perform experiments testing the

algorithm’s robustness to reducing the amount of training

data, or training and testing on different datasets.

The paper is structured as follows. We first formally

describe the problem of VOT measurement (Sec. II), and

describe our algorithm and the feature maps it takes as input

(Sec. III). We then turn to our experiments: first the datasets

and evaluation methods used (Sec. IV), then experiments

testing our method’s accuracy (Sec. V), and its robustness to

decreasing the amount of training data and to mismatched

train/test conditions (Sec. VI). We further evaluate our

system by comparison with previous work (Sec. VII), and by

comparing regression models of variation in VOT induced

by automatic and manual measurements (Sec. VIII). In

Sec. IX we sum up, and discuss directions for future work.

II. PROBLEM SETTING

In the problem of VOT measurement, we are given a

segment of speech, containing a stop consonant (plosive) fol-

lowed by a voiced phone. The goal is to predict the time dif-

ference between the onset of the stop burst and the onset of

voicing in the following phone. The speech segment can be

of arbitrary length, but should include at most one burst, and

its beginning need not be precisely synchronized with the

stop’s burst or closure; it is only required that the segment

begins before the burst onset.

Note that an important prerequisite to VOT measurement

is finding such segments, i.e., determining where to begin look-

ing for each burst. We view this as a separate problem, and

focus on the problem of VOT measurement itself in this paper.

Throughout the paper we write scalars using lower case

latin letters (x), and vectors using bold face letters (x). A

sequence of elements is denoted with a bar ð�xÞ and its length

is written j�xj.
We represent each speech segment by a sequence of

acoustic feature vectors �x ¼ ðx1;…; xTÞ, where each xt

(1� t� T) is a D-dimensional vector. We denote the domain

of the feature vectors by X � RD. (The precise set of fea-

tures used is described below.) Because different segments

have different lengths, T is not fixed; we denote by X� the

set of all finite-length sequences over X . Each segment is

associated with an onset pair: tb 2 T , the onset of the burst

(in frames), and tv 2 T , the onset of voicing of the following

phone, where T ¼ f1;…; Tg. Given the speech segment �x,

our goal is to predict tv� tb: the length of time that passes

between the beginning of the stop consonant’s burst and the

beginning of voicing in the following voiced phone. We

assume here that tb< tv, and leave the case of “prevoiced”

stops (where tb> tv), to future work. Our goal is to learn a

function f from the domain of all speech segments X� to the

domain of all onset pairs T 2.

III. LEARNING APPARATUS

In this section we describe a discriminative supervised

learning approach for learning a function f from a training
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set of examples. Each example consists of a speech segment

�x and a label (tb, tv). Our goal is to find a function which per-

forms well on the training set, as well as on unseen exam-

ples. The performance of f is measured by the percentage of

predicted VOT values, tv� tb, which are within a time

threshold of the manually labeled values.

Formally, given a speech segment �x, let ðt̂b; t̂vÞ ¼ f ð�xÞ
be the predicted onset pair. The cost associated with predict-

ing ðt̂b; t̂vÞ when the manually labeled pair is (tb, tv) is meas-

ured by a cost function, c: T 2 � T 2 ! R. The function used

in our experiments is of the form

cððtb; tvÞ; ðt̂b; t̂vÞÞ ¼ maxfjðt̂v � t̂bÞ � ðtv � tbÞj � �; 0g;
(1)

that is, only differences between the predicted VOT and the

manually labeled VOT that are greater than a threshold �, are

penalized. This cost function takes into account that manual

measurements are not exact, and � can be adjusted according

to the level of measurement uncertainty in a dataset. For

brevity, we denote c ¼ c ððtb; tvÞ ; ðt̂b; t̂vÞÞ.
We assume that the training examples are drawn from

Q, a fixed (but unknown) distribution over the domain of the

examples, X� � T 2. The goal of training is to find the f that

minimizes the expected cost between predicted and man-

ually labeled VOT on examples from Q, where the expecta-

tion is taken with respect to this distribution:

Eðx;tb;tvÞ �Q½cððtb; tvÞ; f ð�xÞÞ�:

Unfortunately, because we do not knowQ, we cannot simply

compute this expectation. However, it still turns out to be

possible to find f under lenient assumptions. We assume that

our training examples are identically and independently dis-

tributed (i.i.d.) according to the distribution Q, and that f is

of a specific parameterized form. Below, we explain how to

use the training set in order to find parameters of f which

achieve a small cost on the training set, and a small cost on

unseen examples with high probability as well.

We first describe the specific form used for the function

f. Following the structured prediction scheme (Taskar et al.,
2003; Tsochantaridis et al., 2004), f is constructed from a

predefined set of N feature maps, f/jgN
j¼1, each a function of

the form /j : X� � T 2 ! R. That is, each feature map takes

a speech segment �x and a proposed onset pair (tb, tv), and

returns a scalar which, intuitively, should be higher if the

onset pair makes sense given the speech segment, and should

be lower if it does not. Each feature map can be thought of

as an estimation of the probability of the onset pair given the

speech segment (although the feature map need not actually

be a proper probability distribution). For example, one fea-

ture map we use is the average energy of �x over frames in tb
to tv, minus the average energy over frames in 1 to tb. This

feature map is expected to be high if tb and tv are located at

the beginning and end of a stop burst following a closure,

and low otherwise. Other feature maps might target the

proper location of tv or tb (individually), or target VOT val-

ues (tv � tb) within a particular range. Note that the features,

which the sequence �x is composed of, are oblivious to the

locations of tb and tv, whereas the feature maps are specifi-

cally tailored to handle them.

Our VOT prediction function f is a linear function of the

feature maps, where each feature map /j is scaled by a

weight wj. Linearity is not a very strong restriction, since the

feature maps are arbitrary (so a nonlinear dependency could

be included as a further feature map). The overall score of an

onset pair (tb, tv) is

XN

j¼1

wj/jð�x; tb; tvÞ ¼ w 	 /ð�x; tb; tvÞ;

where we use vector notation for the feature maps,

/¼ (/1,…, /N), and for the weights w¼ (w1,…, wN). Given

�x, f returns the onset pair which maximizes the overall score:

f ð�xÞ ¼ arg max
ðtb;tvÞ

w 	 /ð�x; tb; tvÞ: (2)

In words, f gets as input a speech segment �x composed of a

sequence of acoustic features, and returns a predicted onset

pair by maximizing a weighted sum of the scores returned

by each feature map /j.

We now describe the set of feature maps used (Sec.

III A), then turn to how w is estimated from a training set

of examples, so as to minimize the cost function defined

in Eq. (1) (Sec. III B).

A. Features and feature maps

Consider the speech segment �x ¼ ðx1;…; xTÞ consisting

of T frames, where each acoustic feature vector xt consists of

D features. We extract 7 (D¼ 7) acoustic features every

1 ms. The first 4 features refer to a short-time Fourier trans-

form (STFT) taken with a 5 ms Hamming window: the log

of the total spectral energy, Etotal; the log of the energy

between 50 and 1000 Hz, Elow; the log of the energy above

3000 Hz, Ehigh; and the Wiener entropy, Hwiener, a measure

of spectral flatness:

HwienerðtÞ ¼ log

ð
jPðf ; tÞj2df �

ð
logjPðf ; tÞj2df ;

where P(f, t) is the STFT of the signal at frequency f and

time t. The high frame rate and small window size are used

for fine time resolution, because the burst and voicing onsets

are highly transient events.

The fifth feature, Pmax, is extracted from the signal

itself: the maximum of the power spectrum calculated in a

region from 6 ms before to 18 ms after the frame center. The

sixth feature is the 0/1 output of a voicing detector based on

the RAPT pitch tracker (Talkin, 1995), smoothed with a

5 ms Hamming window. The seventh feature is the number

of zero crossings in a 5 ms window around the frame center.

Figure 1 shows the trajectories of the 7 features for one

speech segment (the word “can’t”).

Before presenting the feature maps, we introduce nota-

tion for local differences. Let xd be the dth acoustic feature

(of an arbitrary speech segment). Ds
t ðxdÞ, the local difference

of resolution s applied to the acoustic feature xd, is defined
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as the difference between the mean of xd over frames {t,…,

min(tþ s, T)} and the mean of xd over frames {max(t � s,

0),…, t}. This quantity provides a local approximation of the

derivative of xd at frame t, with resolution parametrized by s.
We now turn to the feature maps. For each example

ð�x; tb; tvÞ, 63 feature maps (N¼ 63) were calculated. As

described above, each feature map describes a scalar quan-

tity which should be high for an onset pair which makes

sense given the speech segment, and low otherwise. To

ensure comparability of the values of feature maps across

examples, each feature map was z-scored within each

example.

The feature maps are summarized in Table I, where they

are split into 7 types. We describe the intuition behind each

type in turn.

1. Type 1

We expect the correct tb to occur at points of rapid

increase in certain features, such as Ehigh, indicating the

onset of turbulent airflow; at these points the corresponding

local difference features (denoted by D in Table I) spike. In

the example (Fig. 1), Ehigh and Hwiener rapidly increase at the

correct tb. The inclusion of the values of some features

(denoted by F in Table I) at tb helps rule out locations where

a feature rapidly changes, but already has a high value.

2. Type 2

Similar to Type 1, but for features expected to change

rapidly at voicing onset. In the example, all features change

rapidly near the correct tv.

3. Type 3

We expect Pmax to not change during the burst (where

there is no periodicity); hence the mean and maximum of its

local difference over (tb, tv) should be low, as is the case in

the example.

4. Type 4

Similar to Type 3, but taking into account that periodic-

ity can begin towards the end of the burst; hence the mean

and maximum are calculated over (tb, tv� 10).

5. Type 5

Features indicating an aperiodic spectrum (Ehigh,

Hwiener) should be much greater during the burst than before

the burst. Hence, the difference between their mean in (tb, tv)
and in (1, tb) should be large, as is the case in the example.

6. Types 6, 7

Features indicating a noisy spectrum (Ehigh, Hwiener)

should be uniformly low before the burst begins, and hence

should have small mean and max values over (1, tb� 5). (An

endpoint slightly before tb is used because these features

may already be rising by the burst onset.) We also expect

there to be little voicing in this interval, and hence the voic-

ing feature should have a low mean value.

The feature maps were chosen based on manual inspec-

tion of trajectories of the 7 acoustic features for labeled

examples. They reflect knowledge about the effects of stop

bursts and voicing on the spectrum, as well as knowledge

about the process of VOT measurement itself. For example,

feature types 3–4 take into account that the point labeled as

the voicing onset can be somewhat later than the first signs

of periodicity (Type 4), or synchronous with them (Type 3).

(On the relationship between voicing onset’s true location

and common criteria for annotating it based on the speech

signal, see Francis et al. (2003).)

FIG. 1. (Color online) Values of the seven acoustic features for an example

speech segment (the word “can’t”). Vertical dashed lines show the burst and

voicing onsets. PSM stands for power spectrum maximum.

TABLE I. Summary of the 63 feature maps. The feature maps fall into several types described in the text, each of which is evaluated for some of the 7 acoustic

features (one per column). F in row i and column corresponding to feature xj indicates that there is a feature map of type i for feature xj; D indicates there are

three feature maps of type i for the local difference of feature xj, evaluated at s¼ 5, 10, 15. For example, the F, D in row 2 in the Elow column denotes four fea-

ture maps: ElowðtvÞ;D5
tv
ðElowÞ;D10

tv
ðElowÞ; and D15

tv
ðElowÞ.

Feature map type Etotal Elow Ehigh Hwiener Pmax Voicing Zero crossings

1. Value at tb F, D D F, D F, D D
2. Value at tv F, D F, D F, D F, D F, D D D
3. Mean/max over (tb, tv) D/D
4. Mean/max over (tb, tv� 10) D/D
5. Mean over (tb, tv) - mean over (1, tb) F F

6. Mean over (1, tb� 5) F F F

7. Max over (1, tb� 5) F F
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B. A discriminative algorithm

We now describe a simple iterative algorithm for learn-

ing the weight vector w, based on the Passive-Aggressive
family of algorithms for structured prediction described in

Crammer et al. (2006), where the interested reader can find a

more detailed description. Pseudocode for the algorithm is

given in Fig. 2.

The algorithm receives as input a training set S
¼ fð�xi; tib; t

i
vÞg

m
i¼1 of m examples and a parameter C, and

works in rounds. At each round, an example is presented to

the algorithm, and the weight vector w is updated. We

denote by ws the value of the weight vector after the sth iter-

ation. Initially we set w0¼ 0. Let ðt̂sb; t̂
s
vÞ be the cost-adjusted

predicted onset pair for the ith example according to w
s�1,

ðt̂sb; t̂
s
vÞ ¼ arg max

ðtb;tvÞ
ws�1 	/ð�xi; tb; tvÞ þ c½ðtb; tvÞ; ðti

b; t
i
vÞ� :

(3)

We set the weight vector w
s to be the minimizer of the

following optimization problem,

min
ðw;n
0Þ

1

2
jjw� ws�1jj2 þ Cn

s:t: w 	 /ð�xi; ti
b
; tivÞ � w 	 /ð�xi; t̂

s
b; t̂

s
vÞ 
 cs � n; (4)

where cs ¼ c ½ðtb; tvÞ; ðt̂sb; t̂
s
vÞ� ; C serves as a complexity-

accuracy trade-off parameter (as in the SVM algorithm), and

n is a nonnegative slack variable that indicates the loss of the

ith example. Intuitively, we would like to minimize the loss

of the current example (the slack variable n) while keeping

the weight vector w as close as possible to our previous

weight vector ws-1. The constraint ensures that the projection

of the manually labeled onset pair ðtib; ti
vÞ onto w is higher

than the projection of the predicted pair ðt̂sb; t̂
s
vÞ onto w by at

least the cost function between them (cs). It can be shown

(Crammer et al., 2006) that the solution to the above optimi-

zation problem is

ws ¼ ws�1 þ asD/s ; (5)

where D/s ¼ /ð�xi; tib; t
i
vÞ � /ð�xi; t̂

s
b; t̂

s
vÞ. The value of the

scalar as, shown in Fig. 2, is based on the cost function cs,

the different scores that the manually labeled onset pair and

the predicted pair received according to w
s�1, and a parameter C.

Given a training set of m examples we iterate over its

elements, possibly M times (epochs), and update the weight

vector M 	 m times. To classify unseen utterances, we use the

average of {w1,…, wMm}, denoted by w*.

A theoretical analysis (Dekel et al., 2004; Keshet et al.,
2007) shows that with high probability, the function learned

using our algorithm will have good generalization proper-

ties: the expected value of the cost function when the algo-

rithm is applied to unseen data is upper-bounded by the loss

of the algorithm during training, plus a complexity term

which goes to zero linearly with the number of training

examples. For readers familiar with structural SVMs (Taskar

et al., 2003; Tsochantaridis et al., 2004), we note that the

same analysis suggests that the average loss of the Passive-

Aggressive solution is comparable to the average loss of the

structural SVM solution, while the structured Passive-

Aggressive algorithm is much easier to implement and faster

to train.

IV. EXPERIMENTS: PRELIMINARIES

We first describe the datasets used in our experiments

(Sec. IV A), and the different methods used to evaluate the

algorithm’s performance (Sec. IV B).

A. Datasets

Our experiments make use of four datasets, each con-

sisting of audio of English words beginning with voiceless

stops (/p/, /t/, /k/). For each word, the algorithm described

above for training a VOT prediction function requires the

VOT boundaries (tb, tv) and the word boundaries, i.e., where

to begin and end searching for the VOT. We describe how

VOT boundaries and word boundaries were annotated for

each dataset, and briefly describe relevant aspects of each

dataset.

The datasets vary along several dimensions, summar-

ized in Table II. Their speaking styles range in naturalness,

from isolated words to read sentences to conversational

speech. Three broad types of English accents are represented

(American, British, Portuguese-accented). Finally, the re-

cording conditions vary greatly. We perform experiments on

several different datasets in order to test the robustness of

our approach. The promise of learning a function to measure

VOT is that it should perform well on diverse datasets

because it can be retrained on data from each one. By using

several datasets, we show empirically that this is the case.
FIG. 2. Passive-Aggressive algorithm for training the VOT prediction

function.
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1. TIMIT

The TIMIT corpus (Garofolo et al., 1993) consists of

segmentally transcribed sentences read by 630 American

English speakers from 8 dialect regions. It is widely used by

speech recognition researchers and to a lesser extent by pho-

neticians (e.g., Keating et al., 1994). The TIMIT transcrip-

tions are phonetic rather than phonemic, and there are two

phone labels corresponding to each stop phoneme (/p/, /t/,

/k/, /b/, /d/, /g/), for the closure and burst (e.g., pcl and

p for /p/). Thus, each underlying stop can be annotated

as a closure alone, a burst alone, a closure and burst, a

different phone altogether, or nothing (if it is deleted).

We restrict ourselves to all words (excluding SA1 and

SA2 utterances) transcribed as beginning with an

unvoiced stop burst (either preceded by a closure or not),

followed by a voiced segment; this results in 5535

tokens, from all 630 speakers.

The VOT boundaries (tb, tv) were taken to be the burst

boundaries from the TIMIT transcription. Because the burst

sometimes ends after the onset of voicing, this step is an

approximation, one which allows us to take advantage of the

size of TIMIT, and test our algorithm on a widely used data-

set. The word boundaries were also taken from the TIMIT

transcription, except for some pathological cases where a

word boundary coincided with the beginning or end of the

burst. For words annotated as beginning with only a burst

(and no closure), the left word boundary was taken to be

50 ms before the burst onset. For words annotated as consist-

ing solely of an unvoiced stop (e.g., “to” transcribed as tcl
t), the right word boundary was taken to be 25 ms after the

end of the burst. These corrections were made because our

algorithm assumes that the burst and voicing onsets lie

within the host word.

2. Big Brother (BB)

This corpus consists of spontaneous speech from the

2008 season of Big Brother UK, a British reality television

show. The speech comes from four British speakers recorded

in the “diary room,” an acoustically clean environment,

using clip-on microphones; sound quality is generally very

good. The data used here, a subset of the corpus described in

Bane et al. (2012), are VOTs for 704 word-initial voiceless

stops, manually annotated by (one of) two transcribers. The

end of each word has also been annotated. Because the

beginnings of words have not been annotated, we took

the left word boundary of each word to be 25 ms before the

burst onset. Stops with no following voiced segment were

kept if there was still abrupt spectral change at the end of the

burst, and excluded otherwise.

3. SWITCHBOARD

The SWITCHBOARD corpus (Godfrey and Holliman,

1997) consists of spontaneous speech from telephone con-

versations between American English speakers. We chose

subsets of 8 conversations, corresponding to 16 speakers.

VOTs for all word-initial voiceless stops in these subsets

were manually annotated by one transcriber if a burst was

present (e.g., the stop was not realized as a flap), resulting in

893 examples. The boundaries of each word were manually

determined. When a word boundary coincided with the burst

or voicing onset (e.g., for a word realized as an isolated stop,

with no following voicing), the word boundary was adjusted

slightly left or right (for the left or right word boundaries,

respectively), because our algorithm assumes that the burst

and voicing onsets lie within the host word.

4. Paterson/Goldrick words (PGWORDS)

This corpus consists of data from a laboratory study by

Nattalia Paterson and Matt Goldrick (Paterson, 2011), inves-

tigating VOT in the speech of American English monolin-

guals and Brazilian Portuguese (L1)-English bilinguals. In

this study, each of 48 speakers (24 monolinguals, 24 bilin-

guals) produced 144 isolated words, each beginning with a

stop (/p/, /t/, /k/, /b/, /d/, /g/), in a picture naming task. Pro-

ductions other than the intended label as well as those with

code-switching or disfluencies were excluded. The VOT of

each remaining word was manually measured by a single

transcriber. We consider a subset of 6795 VOTs from this

data, only from words beginning with voiceless stops.

Because this dataset consists of words spoken in isolation,

the choice of word boundaries is somewhat arbitrary. We

took the left boundary to be 50 ms before the burst onset and

the right boundary to be when the next prompt was given to

the subject (1–3 s later).

B. Evaluation methods

There is no single obvious method for evaluating the

performance of an automatic VOT measurement algorithm.

Several methods have been used in previous work on auto-

matic measurement, all based on the degree of discrepancy

between automatic and manual measurements. Below, we

measure our algorithm’s performance by three methods:

pure automatic/manual measurement discrepancy, compari-

son of automatic/manual discrepancy to intertranscriber

agreement, and comparison of statistical models fit to auto-

matic and manual measurements. We now describe each

method and its motivation.

1. Distribution of automatic/manual difference

The most common evaluation method used in previous

work is examination of the distribution of differences

between automatic and manual VOT measurements across a

dataset. The algorithm’s performance can then be reported

either as the full (empirical) CDF of automatic/manual

TABLE II. Comparison of datasets used in experiments. A¼American,

B¼British, L1¼first- language, L2¼ second-language.

Dataset Style Dialect Environment N

TIMIT read sentences A laboratory 5535

BB conversational B TV studio 704

SWITCHBOARD conversational A telephone 893

PGWORDS isolated words A (L1, L2) laboratory 6795

3970 J. Acoust. Soc. Am., Vol. 132, No. 6, December 2012 M. Sonderegger and J. Keshet: Automatic measurement of voice onset time

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



differences (as in Stouten and van Hamme, 2009), or as the

percentage of examples with automatic/manual difference

below some fixed set of values, the tolerances (as in Lin and

Wang, 2011). Reporting statistics about the CDF of auto-

matic/manual differences is a standard evaluation method in

ASR tasks, such as forced alignment of phoneme sequences,

where the goal is to predict the location of boundaries in a

speech segment (e.g., Brugnara et al., 1993; Keshet et al.,
2007). In our experiments, we always report performances at

fixed tolerances, and report the full CDF when it gives help-

ful additional information.

Two other evaluation methods, where a single measure

of error is calculated from the set of automatic/manual dif-

ferences, have also been used in previous work. These are

discussed in Sec. VII, where they are used to compare our

algorithm with previous work.

2. Comparison to interrater reliability

A disadvantage of evaluation using the distribution of

automatic/manual differences is that it is not clear what the

gold standard is. VOT measurements for the same example

are expected to vary somewhat between transcribers, or within

a single transcriber (measuring at different times). Intuitively,

progressively better automatic/manual agreement is good up

to a point, but automatic/manual agreement which is too good

means overfitting to the particular set of manual measure-

ments. One solution is to compare the automatic/manual CDF

to interrater reliability (IRR): a CDF of differences between

two transcribers’ VOT measurements. In this view, the gold

standard is for automatic and manual measurements to agree

as well as two sets of manual measurements of the same data.

We compare the predicted/manual difference CDF to an IRR

CDF for experiments on all datasets where IRR data is avail-

able (BB, SWITCHBOARD, PGWORDS).

3. Model-based comparison

Our last evaluation method is more directly related to

the setting in which VOT is usually measured: phonetic stud-

ies addressing clinical or theoretical questions. In such stud-

ies, the question is how some predictor variables—such as

the stop consonant’s place of articulation, or whether the

speaker has Parkinson’s disease—affects VOT across a data-

set. This is typically assessed by performing a statistical

analysis (such as analysis of variance or multiple linear

regression) of the effect of the predictors on VOT, and

reporting the statistical significance and values of model pa-

rameters of interest. Thus, to test whether automatic VOT

measurements from our algorithm can be used to replace

manual measurements, a sensible test is to compare the sta-
tistical models induced from automatic and manual measure-

ments for the same dataset, rather than directly comparing

the automatic and measurements of individual tokens (as in

the evaluation methods described above). The goal is for the

values and statistical significances of the two models to be as

similar as possible. We note that good performance on this

model-based evaluation method does not trivially follow

from good performance on an evaluation method based on

individual tokens, or vice versa.

C. Experiments: Overview

The next four sections describe a series of experiments to

evaluate the algorithm’s performance, using each of the evalua-

tion methods just described. In Sec. V we describe experiments

using the full amount of data available, and where training and

testing data are (disjoint subsets) from the same dataset; we call

these base experiments. We then (Sec. VI) evaluate the robust-

ness of the results obtained in the base experiments to decreas-

ing the amount of training data, or training and testing on

different datasets. In Sec. VII we compare our algorithm to pre-

vious work as closely as possible. Finally, we evaluate the algo-

rithm by model-based comparison (Sec. VIII).

In all experiments, we only considered burst onsets tb
within 0–150 ms of the start of the word, and voicing onsets

tv 15–200 ms later than tb; this step attempts to restrict the

algorithm’s focus to the first two segments of each word.

V. EXPERIMENTS I: BASE

The evaluation method used for the base experiments is

simply the distribution of automatic/manual differences.

Where IRR data is available (all datasets except TIMIT),

this distribution is compared to the distribution of differen-

ces between transcribers.

The structure of each base experiment was the same: the

dataset was split into training, development, and test sets

corresponding to subsets of speakers. The parameters C, �,
and M (number of epochs) were tuned by training a weight

vector on the training set for each parameter triplet in the

ranges C 2 0:01; 0:1; 1; 5; 10; 100; � 2 f2; 3; 4; 5g, and M
2 f1; 2; 3; 4; 5g (for TIMIT, PGWORDS) or M
2f1; 2; 3; 4; 5; 6; 7; 9; 11; 15g (for BB, SWITCHBOARD).1

The weight vector was selected which gave the lowest mean

absolute difference between predicted and actual VOT over

examples in the development set. This w* was then applied to

predict VOTs for examples in the test set.

For each experiment, Table III summarizes the distribu-

tion of automatic/manual differences over the test set, and

the distribution of intertranscriber differences over the set of

double-transcribed examples (except for TIMIT).

For the BB dataset, the training/development/test sets

consisted of 405/142/160 examples (2/1/1 speakers), and the

parameter values chosen by tuning on the development set

were C¼ 5, �¼ 3, and M¼ 15. A subset of the data (108

stops; 15.3%) was double transcribed, by two independent

transcribers. (Neither one trained the other, and there was no

attempt made to synchronize transcription criteria.) In com-

parison to IRR, the algorithm performs very well: the auto-

matic/manual and IRR performances at each tolerance are

extremely similar (within 1.2%). That is, the automatic

measurements match manual measurements as well as two

human transcribers match each other.

For the SWITCHBOARD dataset, the training/develop-

ment/test sets consisted of 563/102/288 examples (6/1/2

speakers), and the parameter values chosen by tuning on the

development set were C¼ 1, �¼ 5, and M¼ 5. A subset of

the data (171 stops; 19.1%) was double-transcribed, by two

semi-independent transcribers. (One transcriber had trained

the other about one year previously, on a different dataset,
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but no attempt at synchronizing transcription criteria was

made for the SWITCHBOARD data.) The algorithm again

performs very well, by comparison to IRR: automatic/man-

ual differences are slightly lower than intertranscriber differ-

ences at tolerances up to about 20 ms, and slightly higher

above 20 ms, becoming significantly higher above 40 ms.

For the PGWORDS dataset, the training/development/test

sets consisted of 4151/403/1340 examples (28/3/6 speakers),

and the parameter values chosen by tuning on the development

set were C¼ 10, �¼ 5, and M¼ 2. A subset of the data (591

stops; 7.3%) was double-transcribed, by two transcribers. (One

transcriber trained the other, and they worked together on syn-

chronizing measurement criteria for this dataset.) The algorithm

performs less well on this dataset than for BB or SWITCH-

BOARD, by comparison to IRR: automatic/manual VOT

measurement differences are higher than intertranscriber diffe-

rences, at all tolerances. A possible explanation for this diffe-

rence in performance is that the intertranscriber data for the

three datasets are not comparable. The transcribers for

PGWORDS worked together to synchronize their measurement

criteria on this dataset, while the transcribers for BB and

SWITCHBOARD did not. Thus, the algorithm’s performance

on PGWORDS might be closer to IRR if intertranscriber data

were used from two independent transcribers.

For the TIMIT dataset, we used Halberstadt’s (1998)

split of speakers into training, development, and test sets

(specifically, “full” test) consisting of 4132/397/1006 exam-

ples (462/50/118 speakers). The parameter values chosen by

tuning on the development set were C¼ 5, �¼ 4, and M¼ 2.

Performance for this dataset is worse than other datasets (in

the sense of greater automatic/manual differences) for toler-

ances up to about 10 ms, and slightly better at tolerances

above 10 ms. However, it is not clear how comparable the

results for different datasets are, given that the TIMIT anno-

tations actually denote burst boundaries rather than VOT.

Below (Sec. VII) we will more directly evaluate our TIMIT

results, by comparing them with previous work on automatic

VOT estimation which also uses test data from TIMIT.

VI. EXPERIMENTS II: ROBUSTNESS

The base experiments show that our algorithm generally

performs very well on several datasets, evaluated against

IRR; we show below that it also performs well relative to

previous work (Sec. VII). However, in both cases we assume

ideal training conditions: a relatively large training set is

available to train w*, and the training and test sets consist of

examples from the same corpus. In contrast, the typical use

case for a VOT measurement algorithm is a corpus where lit-

tle or no annotated data is available. For our algorithm to be

practically useful, we must test how performance varies as

these conditions are relaxed. If relatively few examples are

needed to train w*, other researchers can annotate a small

subset of data to train our algorithm; if performance varies

little when the training and test corpora are not the same,

researchers working on a new dataset can use one of our

weight vectors pretrained on a large corpus. This section

presents experiments testing the algorithm’s robustness to

decreasing the amount of training data (Sec. VI A), and to

mismatched training and testing datasets, where a weight

vector trained on one corpus is used to measure VOT for

data from a different test corpus (Sec. VI B).

A. Varying the amount of training data

For each of the base experiments, we tested the robustness

of our algorithm to decreasing the amount of training data,

holding the test set constant, as follows. Let N be the size of

the training set for a given experiment. We chose a series of

percentages p of the test set, such that pN spanned the range

(0, N], including N (p¼ 1). (We did not use the same values of

p for each dataset because N varies greatly across our datasets.)

For each p we chose a random subset of the training set of size

pN and re-ran the experiment, using the same test set as the

original (p¼ 1) experiment, and using the same parameter val-

ues (for C, �, and M) as in the original experiment. Since the

results depend on the particular subset of pN chosen, this pro-

cedure was repeated 25 times for each p.
The results of the experiments are summarized in Fig. 3.

To focus on how performance changes as the amount of

training data is decreased, we show results only for a subset

of tolerances (and do not show the full CDFs of automatic/

manual differences). Each point and its associated errorbars

represent the mean and 62 standard deviations of the 25

runs at a fixed amount of training data.

For all datasets, the algorithm’s performance is

extremely robust to decreasing the amount of data. Perform-

ance stays essentially constant (error bars overlap with those

for the full training set)—until the amount of data is

decreased below 250 training examples for PGWORDS and

TIMIT, and below 25–50 examples for SWITCHBOARD

and BB. Performance decreases more at lower tolerances

TABLE III. Performance in base experiments (Sec. V), given as percentage of examples in the test set with automatic/manual difference (for all datasets) or

intertranscriber difference (for all datasets except TIMIT) below a series of fixed tolerance values. (For example, 46.1% of examples in the TIMIT test set had

automatic and manual measurements differing by �2 ms.)

Dataset Experiment �2 ms �5 ms �10 ms �15 ms �25 ms �50 ms

BB Auto/manual 53.5 79.3 88.1 93.1 96.2 98.7

Intertranscriber 54.4 79.6 89.3 93.2 96.1 99.0

SWITCHBOARD Auto/manual 53.1 73.3 83.3 89.0 93.4 96.5

Intertranscriber 52.9 70.0 82.4 88.8 94.1 99.4

PGWORDS Auto/manual 49.1 81.3 93.9 96.0 97.2 98.1

Intertranscriber 61.9 90.0 96.9 98.6 99.5 100.0

TIMIT Auto/manual 46.1 67.2 85.0 94.7 98.1 99.0
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(2–5 ms) than at higher tolerances (10–50 ms), especially for

TIMIT and PGWORDS. To speak more quantitatively,

we can focus on performance at 10 ms tolerance, shown in

Table IV. Across all datasets, training on just 25 examples

decreases performance at this tolerance by 1.8%–5.2%.

These results suggest our algorithm can be quickly adapted

to a new dataset with little training data.

B. Mismatched training and test corpora

We now test how the algorithm’s performance varies

when different training and testing corpora are used. To

compare to the base experiments (where the training set and

test set were drawn from the same corpus), we conduct 12

additional experiments, corresponding to all possible choices

of two distinct datasets for training and testing w*. We

denote the weight vectors trained on each corpus in the base

experiments as w�TIMIT, etc. The weight vector for each cor-

pus is applied to give automatic measurements for examples

in the test sets of the other three corpora.

The distributions of automatic/manual differences for

each pair of training and testing corpora are shown in Fig. 4.

To discuss performance differences quantitatively, it will

again be helpful to refer to performances at 10 ms for each

curve, given in Table V.

We note some patterns in these results. First, examining

the full CDFs, it is always the case that the best performance

for a test set from a given corpus is achieved using training

data from that corpus. (This is visually clear except for the

TIMIT test set, where the CDF corresponding to w�TIMIT is in

fact higher than the CDF corresponding to w�PGWORDS at all

tolerances.) Better performance when training and test data

are drawn from the same distribution is not surprising, but it

is useful to investigate how much performance drop to

expect, for potential applications of the algorithm where re-

training on data drawn from the same distribution as the test

corpus would not be possible. (For example, real-time VOT

detection in a novel recording environment.)

How performance changes when different training and

test corpora are used depends largely on the test corpus. For

the BB, TIMIT, and SWITCHBOARD test sets, there is sig-

nificant variance in how much using a different test corpus

affects performance (1%–11% at 10 ms), with some mis-

matched train/test pairs achieving performance near the corre-

sponding matched train/test conditions in certain tolerance

ranges. Performance on the PGWORDS test set is more dra-

matically affected by training on a different corpus, with a

FIG. 3. (Color online) Results for

experiments varying the amount of

training data (Sec. VI A): Percentage

of tokens with automatic/manual dif-

ference below tolerance values (2, 5,

10, 20, 50 ms) as the amount of

training data is varied. Points and

errorbars indicate means 62 stand-

ard deviations across 25 runs.

TABLE IV. Mean performance at 10 ms tolerance (across 25 runs) in

experiments where the amount of training data is decreased (Sec. VI A),

with number of training examples in parentheses, for the lowest number of

training examples (n1), the highest number of training examples (N), and the

lowest number of training examples (n2) for which performance is within 2r
of mean performance with the highest number of training examples.

Dataset n1 n2 N

BB 86.4 (24) 86.4 (24) 88.2 (404)

SWITCHBOARD 78.6 (23) 78.6 (23) 83.8 (563)

TIMIT 80.8 (25) 82.5 (99) 84.7 (4132)

PGWORDS 89.8 (25) 91.2 (100) 93.5 (4151)
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7%–17% performance drop at 10 ms depending on the train-

ing set. It is not clear why changing the weight vector used

matters more for PGWORDS, compared to the other datasets.

C. Discussion

In this section, we have described experiments testing the

robustness of our algorithm’s performance to decreasing the

amount of training data, and on mismatched training and test

conditions. We found that performance is very robust to

decreasing the amount of training data, and that the effect of

mismatched training and test datasets depends on the particular

datasets used. The motivation for these experiments was to

determine whether our algorithm can be practically useful in

applications to new datasets, without manually labeling a large

amount of data. Our results suggest a positive answer: only a

small number of manually labeled VOTs (<250) are needed

for training, in addition to a small number for validation (per-

haps 50–200), to achieve near-maximum performance.

VII. EVALUATION I: COMPARISON WITH PREVIOUS
WORK

In this section, we compare our algorithm’s performance

with all previous studies on automatic VOT measurement (to

our knowledge) which have examined agreement between

automatic and manual measurements. We are able to com-

pare directly (testing on the same test set) to two previous

approaches (Stouten and van Hamme, 2009; Lin and Wang,

2011), and indirectly to two other approaches (Yao, 2009;

Hansen et al., 2010).

A. Stouten and van Hamme (2009)

Stouten and van Hamme consider voiced and voiceless

stops with bursts in TIMIT, in all positions. They perform

manual VOT measurements for a subset of 582 stops (the

“manual” dataset), and compare these to their automatic

measurements. For each stop, an HMM-based forced aligner

is first applied to the TIMIT phone transcription to find the

approximate location of the stop’s burst. A knowledge-based

algorithm operating on time frequency reassigned spectro-

grams is used to determine the burst and voicing onsets. If

either is not found, the force-aligned burst boundaries are

used as a fallback to determine VOT.

We applied our algorithm to the 293 voiceless stops

from SvH’s “manual” dataset, using w* from the TIMIT

base experiment. Because we are now not dealing only with

stops in initial position, the left boundary where the algo-

rithm begins searching for tb was determined differently

from our earlier TIMIT experiments. Each example was

FIG. 4. (Color online) Distribution

of automatic/manual differences as a

function of the dataset the training

set is drawn from, holding the test

set constant. Lines for mismatched

train/test datasets correspond to

experiments described in Sec. VI B.

Lines for same train/test datasets

correspond to the base experiments

(Sec. V).

TABLE V. Mean performance at 10 ms tolerance in experiments with mis-

matched training and test corpora (Sec. VI B).

Test corpus

Training corpus BB SWITCHBOARD TIMIT PGWORDS

BB 88.0 79.4 75.6 77.2

SWITCHBOARD 84.3 83.3 78.0 86.9

TIMIT 81.1 81.1 84.8 84.9

PGWORDS 77.4 74.1 83.9 93.9
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taken to start at the beginning of the segment preceding the

burst (i.e., the closure, if one was present), and end at the

right word boundary, where the segment and word bounda-

ries were taken from TIMIT.

Table VI summarizes the distribution of automatic/man-

ual differences, relative to SvH’s manual measurements, for

the two automatic measurement methods: our method (with

w* from the TIMIT base experiment) and SvH’s method.

The error distribution for SvH was determined from Fig. 5 of

Stouten and van Hamme (2009), using voiceless stops only.

(We averaged the CDFs for /p/, /t/, and /k/, weighted by the

number of tokens for each in the “manual” dataset.) Our

method performs better for tolerances below about 22 ms,

corresponding to 94% of examples.

A few differences between our setup and SvH’s are rele-

vant for comparing our results. To determine where to begin

searching for the burst and voicing onsets, SvH use the

force-aligned burst boundaries, while we assume the left

word boundary is known. It is possible that our results would

worsen using force-aligned word boundaries.

In addition, SvH’s method includes a fallback step (in

case a burst or voicing onset is not detected) where VOT is

set to the force-aligned burst’s duration, while ours does not.

The fallback step occurs for two types of examples. For

some, the forced-aligned burst boundaries are off; for others,

the alignment is correct, but there is no prominent burst or

voicing onset. On the first type of example our algorithm

should do better, since the word boundary is known; on the

second type, SvH’s algorithm will likely do better. Most

gross errors by our algorithm are in fact cases lacking either

a clear burst onset or a clear voicing onset. Our method’s

prediction in these cases is often wildly off, while SvH’s

falls back to the force-aligned burst duration. Thus, it is not

clear what net effect the inclusion of a fallback step has on

the SvH results relative to ours.

Finally, our algorithm has one clear disadvantage in the

comparison with SvH: it was only trained on initial stops,

but tested in stops in all positions, and the training and test-

ing data were labeled by different annotators.

B. Lin and Wang (2011)

Lin and Wang automatically measure VOT for word-

initial stops from TIMIT, using a multi-step process. Their

approach makes use of two tools: (1) an HMM-based forced

aligner, at either the state or phone level (they try both),

using MFCC features; (2) two random forest detectors,

trained to detect the onset of a burst phone and the onset of a

voiced phone. For a given utterance, the forced aligner is

first applied to the TIMIT phone transcription to find the

approximate location of the burst for each stop. For a given

stop, the random forest detectors are then deployed to find

the burst and voicing onsets, possibly selecting from several

candidates. If no candidates are found for an onset, the

force-aligned burst boundary is used instead. The burst

boundaries from the TIMIT annotation are used as a proxy

for VOT (as we also did in our TIMIT experiments above).

Lin and Wang test their algorithm on 2344 word-initial

stops from the TIMIT test set, of which 1174 are voice-

less. We applied our algorithm to the voiceless stops, using

the w* from our TIMIT experiments above. Because this set

of voiceless stops forms a subset of the complete TIMIT test

set used in our experiments above, the word boundaries for

each example have already been determined.

Table VII shows performance on the test set for Lin and

Wang’s method (their Table IV, “voiceless” row) and our

method. (Results are shown in the format used in their pa-

per.) Our algorithm gives better performance at all toleran-

ces, on average by 1.8%.

There are two important differences between our setup

and that of Lin and Wang. First, as Lin and Wang note with

respect to results in a previous paper (Sonderegger and

Keshet, 2010), our training set contains data from many

more TIMIT speakers than theirs (462 speakers in our setting

versus 4 speakers in theirs). While the exact numbers of

speakers used in the two approaches are not comparable

because of differences in the training procedures,2 we have

shown above (Sec. VI A) that our method is very robust to

decreasing the amount of training data.

Second, like SvH, Lin and Wang use the force-aligned

TIMIT phone transcription to determine where to search for

the burst and voicing onsets, while we assume the left word

boundary is known. It is again possible that our results would

worsen using force-aligned word boundaries.

C. Yao (2009) and Hansen et al. (2010)

Our results can be compared less directly with two other

studies where automatic and manual measurements are com-

pared. Yao (2009) determines VOT for initial voiceless stops

in the Buckeye Corpus, using MFCC “spectral templates” in

a knowledge-based algorithm. The evaluation metric used is

the RMS error for automatic measurement of tb only. Hansen

et al. (2010) determine VOT for initial voiceless stops from

CU-Accent, a corpus of laboratory speech consisting of

single-word productions by native and non-native English

speakers. They measure VOT with a knowledge-based algo-

rithm, acting on the Teager Energy Operator representation

of the speech signal. The evaluation metric used is the per-

centage of stops where the automatic measurement differs

by <10% from the manual measurement.

TABLE VI. Comparison of results for test data from Stouten and van

Hamme (2009), using their algorithm and using our approach.

Algorithm �2 ms �5 ms �10 ms �15 ms �25 ms �50 ms

Stouten and van

Hamme (2009)

28.6 42.8 77.0 86.2 94.7 99.5

Our approach 44.6 67.6 85.1 91.1 94.1 96.1

TABLE VII. Comparison of results for test data from Lin and Wang (2011),

using their algorithm and using our approach.

<5 ms <10 ms <15 ms <20 ms

Lin and Wang (2011) 58.9 80.7 90.5 94.2

Our approach 60.5 81.4 93.0 96.8
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Table VIII gives these metrics for the experiments on

our four datasets reported above. With the caveat that com-

parison is difficult because of the different datasets used, our

experiments’ performance on these metrics compares favor-

ably to previous work. All experiments have RMS tb error

less than Yao (2009). Our best-performing experiment,

PGWORDS, does better than Hansen et al. (2010) on the

<10% VOT error metric. Importantly, the PGWORDS

dataset is arguably the most comparable to the CU-Accent

dataset of Hansen et al. both consist of single-word produc-

tions in laboratory conditions, produced by both native and

non-native speakers.

VIII. EVALUATION II: REGRESSION MODEL
COMPARISON

We now evaluate the algorithm by comparing the

regression models induced by automatically and manually

measured data, as described above (Sec. IV B 3), for the

PGWORDS dataset. We model two well-documented pat-

terns of variation in VOT in this dataset. VOT is affected

by the stop consonant’s place of articulation (POA), with

the expected pattern /p/< /t/< /k/; (e.g., Cho and Lade-

foged, 1999). VOT is also affected by the speakers linguis-

tic knowledge. Bilinguals who speak languages with

contrasting VOT systems produce distinct VOT patterns

from monolingual speakers, reflecting the interaction of

their two linguistic systems. When speaking English, bilin-

guals whose native language contrasts prevoiced vs short-

lag VOTs produce shorter VOTs than those of English

monolinguals (e.g., Fowler et al., 2008). Thus, we expect

the bilingual Portuguese-English speakers to have lower

VOT than the monolingual English speakers in the

PGWORDS data.

For each set of measurements (automatic, manual), we

build a mixed-effects linear regression model of how VOT

depends on a speakers’s language background and the place of

articulation of the initial consonant of the host word. [We do

not describe mixed models in depth; see e.g., Hox (2010), or

Baayen et al. (2008) for the particular type of model with

“crossed random-effects” used here.] We first describe the

model’s structure, then compare the results of fitting it to auto-

matic and manual measurements on the PGWORDS dataset.

A. Model description

VOT is modeled as the sum of several types of terms:

(1) An overall mean value;

(2) A speaker-specific adjustment to the mean; adjustments

are normally distributed across speakers;

(3) The same, for words;

(4) Terms indexing the speaker’s L1, what phone the word

begins with, and the product of the two, which allows

how VOT depends on POA to differ depending on the

speaker’s L1.

Terms in (2) and (3) are called random-effects; terms in

(4) are called fixed-effects.

Formally, each set of measurements consists of n data

points, with VOT values y1,…, yn. Let s[i] and w[i] be the

speaker and the word corresponding to data point i. Three

input variables index L1 background and phone for each

data point:

(1) x1
i : 1 if speaker s[i] has L1¼English, 0 otherwise;

(2) x2
i : 1 if word w[i] begins with /k/, 0 otherwise;

(3) x3
i : 1 if word w[i] begins with /t/, 0 otherwise.

One variable indexes L1 (which has two possible values)

and two variables index place of articulation (which has

three possible values) so that the model remains identifiable.

Specifying different values (0 or 1) for these three variables

allows us to express any combination of L1 and place of

articulation.

We denote the predictors and fixed-effect coefficients as

xi¼ð1; x1
i ; x2

i ; x
3
i ; x

1
i x2

i ; x
1
i x3

i Þ and b¼ (b0, b1, b2, b3, b4, b5).

VOT is then modeled as

yi ¼ b 	 xi þ cs½i� þ dw½i� þ �i

cs½i� � Nð0; r2
s Þ; dw½i� � Nð0; r2

wÞ; �i � Nð0; r2Þ: (6)

B. Model summary

Below, we describe the models by summarizing their

fixed-effect and random-effect terms. For the fixed-effects,

we give coefficient estimates ðb̂Þ and their standard errors

[SEðb̂Þ, as well as corresponding p-values quantifying the

significance of the coefficient estimate (for a Wald test

applied to b̂=SEðb̂ÞÞ].3 While the random-effects for each

speaker and each word (dw[i], cs[i]) are not actually fitted pa-

rameters, it is possible to extract estimates of them known as

best linear unbiased predictors (BLUPs) (Pinheiro and Bates,

2000). We will show BLUPs for the deviation of each

speaker and word from the mean, along with their standard

errors.

C. Comparison of models

We constructed two models, one fit using automatic

measurements (the “automatic model”) and one using man-

ual measurements (the “manual model”) as follows. The

PGWORDS dataset was split into a split and heldout
set, such that split contained a random 75% of data points

for each speaker, and heldout contained the remaining

25%. An automatic measurement was assigned to each data

point in split by applying our algorithm (with the values

of C, M, and � used for the PGWORDS base experiment),

using four-fold cross validation. (Speakers were split

TABLE VIII. Base experiments performance evaluated by metrics used by

Yao (2009) and Hansen et al. (2010).

RMS tb error (ms) <10% VOT error

TIMIT 6.5 66.5

BB 5.8 73.4

SWITCHBOARD 10.5 68.7

PGWORDS 6.8 81.2

Yao (2009) 10.8 �
Hansen et al. (2010) � 74.9
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randomly into four groups; for each group, automatic VOT

measurements were computed using w* trained on data from

the other 3 groups.) Each data point in split now had one

automatic and one manual measurement, resulting in two

datasets, differing only in whether VOT (yi, in the notation

above) was measured automatically or manually.

Each of the two datasets was trimmed for outliers, by

discarding measurements further than 3 standard deviations

from the mean within a speaker. For each dataset, a model of

the form in Eq. (6) was fit using the lmer function in the R

package lme4 (Bates et al., 2011). We compare the auto-

matic and manual models in two ways: by fitted model pa-

rameters, and by predictions on held-out data.

1. Comparison of model parameters

We first consider the two models’ fixed-effects, then

turn to the BLUPs of their random-effects. Table IX shows

the fixed-effect coefficient estimates, along with their stand-

ard errors and associated significances. The estimates and

standard errors are extremely similar in the two models, with

no fitted coefficient having a value in one model more than

1.25 standard errors away from its value in the other model.

The significances of the fixed-effect coefficients in the two

models are also very similar: all coefficients are highly sig-

nificant except b4, which is marginal in the automatic model

and not significant in the manual model.

The group means of the empirical data are /p/¼ 67.9 ms,

/t/¼ 80.6 ms, /k/¼ 79.7 ms for monolinguals; and /p/

¼ 41.3 ms, /t/¼ 52.8 ms, /k/¼ 65.2 ms for bilinguals. The

fixed-effects for both models suggest that the trends

observed in the empirical data are significant. English speak-

ers have longer VOTs than bilingual Portuguese-English

speakers and VOT depends on place of articulation as /p/

< /t/< /k/, both expected results. There is also a significant

interaction between L1 and phone. For bilingual speakers

the entire /p/< /t/< /k/ pattern is significant. For monolin-

guals, the VOT difference between /p/ and /t/ is greater, and

the VOT difference between /p/ and /k/ is smaller. The pat-

tern of VOT dependence on place of articulation is thus

closer to /p/< /t/ ¼ /k/ for monolinguals, consistent with

some previous studies of VOT in English word-initial voice-

less stops (e.g., Cooper, 1991; Docherty, 1992).

Turning to the random-effects, the automatic and man-

ual models each predict a random intercept for each speaker

(the cs[i]), and a 95% confidence interval (1.96� standard

errors). The models predict similar deviations from the mean

for each speaker, with the confidence intervals for cs[i] over-

lapping for all but 1 of the 34 speakers. The models also pre-

dict similar deviations from the mean for each word (the

dw[i]), with the 95% automatic and manual confidence inter-

vals overlapping for all 206 words.

Thus, both the fixed-effects and random-effects are very

similar for the two models. The similarity of the fixed-effect

coefficients means that the models make quantitatively simi-

lar predictions for the effects of place of articulation and first

language. The similarity of the random-effect BLUPs means

that the two models predict similar deviations from the over-

all mean for each individual speaker and word.

2. Comparison of model predictions

We can also compare the models’ predictions on the

25% of held-out data, to get a sense of how similar their pre-

dictions are on unseen data. The automatic and manual mod-

els make extremely similar predictions, differing by �5 ms

for 90.2% of data points in the held-out set, and with correla-

tion r¼ 0.992 and mean absolute difference 2.31 ms across

all data points in this set. By comparison, measurements by

two human transcribers on a subset of the PGWORDS data-

set (see Sec. V) differ by �5 ms for 90.0% of data points,

and have correlation r¼ 0.987 and mean absolute difference

2.49 ms. Thus, the automatic and manual models make pre-

dictions which agree as well as two human transcribers.

IX. DISCUSSION

A. Summary

We have described a machine-learning approach to the

problem of automatic VOT measurement which treats this

task as a case of structured prediction. A function to measure

positive VOT is learned from manual measurements, using a

discriminative large-margin training procedure which aims

to minimize error in the difference between predicted and

actual VOT. The function takes as input feature maps which

are specialized for the task of VOT measurement. Because

our system is trainable, it can adapt to particular datasets and

measurement criteria.

In a first set of experiments, we showed that the algo-

rithm achieves excellent performance for each of four data-

sets, when all data available for training is used, and in

particular near-IRR performance on the three datasets were

IRR data was available. In a second set of experiments, we

showed that the algorithm is robust to decreasing the amount

of training data, with performance remaining essentially con-

stant down to about 50–250 training examples (depending

on the dataset). Thus, the algorithm is adaptable to new data-

sets with relatively little effort. We also found that perform-

ance generally suffers for mismatched versus matched

training and test corpora. Thus, the algorithm is learning

something about the particular type of speech and measuring

criteria used for each dataset.

The algorithm generally outperforms previous work

where automatic and manual VOT measurements are

TABLE IX. Summary of fixed-effects in automatic and manual models:

fixed-effects coefficient estimates ðb̂Þ, their standard errors, associated t sta-

tistic ðb̂=SEðbÞÞ, and p-values.

Automatic model Manual model

b̂ SEðb̂Þ t p b̂ SEðb̂Þ t p

b0 52.8 2.8 18.6 ***a 51.5 2.9 17.7 ***

b1 11.0 2.4 4.6 *** 10.6 2.5 4.3 ***

b2 8.9 2.1 4.3 *** 9.6 2.1 4.7 ***

b3 17.1 1.7 10.3 *** 17.7 1.7 10.6 ***

b4 1.4 0.8 1.8 0.072 0.79 0.72 1.1 0.27

b5 �4.7 0.7 �7.0 *** �5.5 0.6 �8.8 ***

aThe three asterisks denote p< 0.0001.
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compared, with the caveat that precise comparisons are diffi-

cult because of differences in the datasets and experimental

setups used. We also evaluated the algorithm by comparing

two mixed-effects regression models for the effect of several

covariates on VOT in a dataset of laboratory speech: one

model fitted using automatic measurements, and the other fit-

ted using manual measurements. The two models were

extremely similar, both in terms of fitted model parameters

and predictions on held-out data. This shows that a study of

how the covariates affect VOT in this dataset would have

reached the same conclusions whether VOT measurements

were done manually, or automatically using our method.

B. Future directions

In this paper, we have considered word-initial English

voiceless stops, because we know that they are nearly always

realized with a burst, and hence have positive VOT. (In

TIMIT, for example, 99.6% of word-initial voiceless stops

for words other than “to,” which is sometimes flapped, are

realized with a burst.) However, for stops which are not

word-initial or not voiceless, this is often not the case. Eng-

lish stops in non-initial position are often not realized with a

burst; for example, Randolph (1989) found that in 3 corpora

of read speech (including TIMIT), 31% of stops occurring as

syllable codas were realized with a burst, compared with

97% for syllable-initial stops. Voiced stops in English are

sometimes realized with negative VOT, though estimates of

how often such “prevoicing” occurs vary greatly (e.g., 23%

in Lisker and Abramson (1964) vs 62% in Smith (1978) for

word-initial /b/ in isolated words; see Docherty (1992) for

discussion) The negative VOT case is even more important

for languages such as European French or Thai, where pho-

nologically voiced stops are almost universally realized with

prevoicing (Lisker and Abramson, 1964; Caramazza and

Yeni-Komshian, 1974; Kessinger and Blumstein, 1997).

Future work will deal with both the task of measuring nega-

tive VOT, and the task of deciding whether or not a burst

occurred for a given stop. Both are necessary for our ulti-

mate goal: an automatic measurement system that can take

an arbitrary segment of speech and its orthographic tran-

scription, and output a VOT measurement (positive, nega-

tive, or no burst) for each stop which is expected to occur.

The approach taken here combines knowledge about the

cues human annotators use to measure VOT with machine-

learning techniques for predicting structured output, to tailor

an algorithm to measure VOT nearly as accurately as humans,

and which meets the three criteria laid out in the introduction:

accuracy, trainability, and robustness. Given suitable features

and training data, it would be straightforward to extend the

approach taken here to other widely measured phonetic varia-

bles where the output is a sequence of time points, such as

vowel duration, segmenting a stop into different parts (clo-

sure, burst, frication), or the duration of vowel nasalization.

More generally, for most phonetic quantities of interest (e.g.,

VOT, vowel formants, spectral measures for fricatives) mea-

surement is a skilled task, and expert annotators usually use

several types of cues (spectral, auditory, what the quantity

“should” look like) in reaching a decision. The approach

taken here is to supply these cues as features to an appropriate

machine-learning procedure to learn how to annotate a partic-

ular quantity. Knowledge about the annotation task is also

tied to the algorithm’s structure by using a specialized cost

function related to the quantity being annotated, which is

directly optimized using discriminative training. The results

of this paper suggest that combining knowledge about the

annotation task to be performed with appropriate machine-

learning techniques is a promising direction for designing

algorithms to automate phonetic measurement in general.
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ances. Thus, we believe the number of speakers whose utterances are used

in training is not a good method for comparing the amount of training data

used in the two approaches.
3For a dataset as large as the one considered here, b̂ = SEðb̂Þ should follow
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