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Abstract

Many phonological processes can be affected by segmental context spanning word boundaries,
which often lead to variable outcomes. This paper tests the idea that some of this variability can be ex-
plained by reference to production planning. We examine coronal stop deletion (CSD), a variable pro-
cess conditioned by preceding and upcoming phonological context, in a corpus of spontaneous British
English speech, as a means of investigating a number of variables associated with planning: prosodic
boundary strength, word frequency, conditional probability of the following word, and speech rate.
From the perspective of production planning, (1) prosodic boundaries should affect deletion rate inde-
pendently of following context; (2) given the locality of production planning, the effect of the following
context should decrease at stronger prosodic boundaries; and (3) other factors affecting planning scope
should modulate the effect of upcoming phonological material above and beyond the modulating ef-
fect of prosodic boundaries. We build a statistical model of CSD realization, using pause length as
a quantitative proxy for boundary strength, and find support for these predictions. These findings
are compatible with the hypothesis that the locality of production planning constrains variability in
speech production, and have practical implications for work on CSD and other variable processes.

1 Introduction: Variability and Coronal Stop Deletion

Research within sociolinguistics, within the framework of prosodic phonology, within phonetics, and
within the literature on probabilistic reduction has uncovered rich patterns of variability in the appli-
cation of phonological processes. Less is known about why certain types of processes are variable, and
what determines the structure of this variability, such as in ‘sandhi’ processes that span word bound-
aries, which tend to be more variable than word-internal processes.

This paper examines the realization of word-final coronal stops in English (coronal stop deletion:
CSD, a.k.a. t/d deletion). Our main interest is the effect of the phonological content of an upcoming
word on CSD, e.g. the fact that CSD is more likely to apply if a consonant follows compared to when
a vowel follows, and that it is affected by whether a word is followed by a pause. The effect of the
upcoming phonological context is probabilistic rather than categorical, which has been identified as
a recurring property of across-word phonological interactions in a number of literatures interested in
variability.1

The hypothesis we explore in this paper is that the effect of the phonological content of a following
word is necessarily variable because of the way speech production planning is constrained: speakers do
not reliably plan out the phonological and phonetic detail beyond the current word ahead of time. As
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a result of this flexibility in planning scope, the phonological details of an upcoming word may or may
not be available yet at the time when the current word is being planned. Only if the details of upcoming
word are already known at the time of planning of the current word can they exert their conditioning
effect on a phonological process. We hypothesize that the locality of production planning is one source
of variability in sandhi processes (cf. discussion in Wagner, 2012).

We will refer to this as the Production Planning Hypothesis (PPH). This basic intuition is clear:
the phonological content of a word can only exert its influence if it has actually been planned out
sufficiently to make that content available. If the application of phonological processes across words
is indeed directly constrained by the locality of production planning, we expect that factors that have
been shown to affect the planning of words should interact with the application of sandhi processes.
This perspective suggests a close relationship between the conditioning environment of a process and
whether and to what degree it will be variable, and predicts that sandhi processes that rely on detailed
phonological information about an upcoming word should always be variable.

This paper examines the predictions of the Production Planning Hypothesis for CSD, using a corpus
of spontaneous British English speech, by addressing three research questions: (1) How does duration
of a pause following the coronal stop (which serves as a proxy for boundary strength) affect dele-
tion rate? (2) How does boundary strength (i.e. pause duration) modulate the effects of surrounding
segments on deletion rate? (3) How do other factors influencing the size of the planning window in
production planning, such as measures of word predictability and speech rate, modulate the effects of
the following phonological context on deletion rate?

Our hypothesis is that information about the following context is probabilistically available only if
the word following the CSD environment has been planned. If the likelihood of planning is indeed
inversely correlated with the strength of the prosodic boundary, the hypothesis related to (1) is that
as the strength of a prosodic boundary increases, the probability of deletion decreases. The prediction
with respect to (2) is that the effect of the following context on CSD should be gradiently modulated by
the strength of the prosodic boundary. As the preceding context always falls in the same local planning
domain as the CSD target, we also predict that the strength of the prosodic boundary does not con-
dition the effect of the preceding segment. With respect to (3), we expect that other factors affecting
planning scope, such as the frequency of the target word, bigram probability of the word and the fol-
lowing word, and the conditional probability of the following word, should modulate the effect of the
following word, as well as speech rate. We empirically test these predictions of the PPH on a corpus of
spontaneous British English speech, using pause length as a quantitative proxy for prosodic boundary
strength.

Variability of sandhi processes, and the variability CSD more specifically, have figured prominently
in a number of separate strands of research. In the remainder of this section, we review some of these
findings, focusing mostly on the effect of the upcoming phonological context on CSD, and previous
ideas on how it can be accounted for. In section 2, we show how the PPH provides a new rationale
for some of the observed patterns, and also makes new predictions for the structure of the observed
variability, before turning to our new data in section 3. In section 4, we report on the results of the
statistical model, which are interpreted and discussed in section 5.

1.1 Observations about Variability in Sociolinguistics

CSD involves the deletion of the final t/d in a word-final cluster ending in a coronal stop, resulting in
pronunciation of words like mist or bold without an audible final stop. Decades of work in variationist
sociolinguistics and phonetics have studied CSD and other variable processes (‘variables’) in particular
languages in detail and explored the linguistic and social factors conditioning a variable’s rate of ap-
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plication. CSD is one of the best-studied variables in the sociolinguistic literature of the past decades
(beginning with Labov et al., 1968; Fasold, 1972), and the factors which condition CSD rate are well
understood after decades of analysis.

CSD has been shown to be conditioned by a number of linguistic and non-linguistic factors (re-
viewed by Schreier, 2005; Hazen, 2011; Tagliamonte and Temple, 2005), most of which have qualita-
tively similar effects on deletion rate across dialects of English. Amongst these, understanding how the
phonological environment affects the likelihood of application for processes like CSD is a major concern
in the variationist sociolinguistic literature. The rate of deletion has been shown to vary depending on
the type of segment at the start of the upcoming word (Guy, 1980b): this ‘following context effect’ is
usually the conditioning factor which has the greatest effect on deletion rate (versus e.g. speech rate,
preceding context), with deletion occurring more often before more similar segments, and consonants
inducing higher rates of deletion than vocalic segments (Guy, 1980b, 1991a; Hazen, 2011; Schreier, 2005;
Tagliamonte and Temple, 2005; Temple, 2009).

Despite the robustness of the following consonant > vowel ordering on CSD rate, previous studies
have reached different conclusions about the rate of deletion before pauses. Guy (1980a) found that, for
Philadelphia speakers, pauses patterned more similarly to vowels, whilst more similarly to consonants
for New York speakers. And Tagliamonte and Temple (2005), amongst many others, observed pauses
to induce the least deletion of following contexts, while Hazen (2011) observed higher deletion rates
before pauses than before vowels. A potential cause of the discrepancies found for the effect of pause
in previous CSD studies may be methodological differences in defining the presence of a pause, which
has usually been defined structurally as the lack of a segment following the t/d environment (Kendall,
2013). Instead of viewing pause as one out of several possible following contexts, we will consider
pause as an independent factor, coded as a gradient variable (pause duration), that can modulate the
effect that the phonological context following the pause has on the previous word. Whether pause has
such a modulating effect has not to our knowledge been tested in previous work.

Compared with the following context, the preceding context has often been shown to play a con-
sistent but weaker role in conditioning CSD. Generally speaking, deletion occurs more frequently after
sonorants than obstruents, but sibilant fricatives often induce the highest rates of deletion (Hazen, 2011;
Tagliamonte and Temple, 2005). Differences between the effect of the preceding context and the follow-
ing context are of interest here: Preceding segments are necessarily planned at the time at which a
speaker decides whether nor not to produce a [t,d], and our hypothesis therefore predicts no modu-
lation by factors affecting production planning. Speech rate has also been long thought to affect CSD,
where deletion increases in likelihood in faster speech (Guy, 1980a; Guy et al., 2008),2 but whether
speech rate modulates the effect of the following phonological context, which is of relevance here, has
not been explored.

Another conditioning factor of considerable interest in the sociolinguistic literature is morphologi-
cal class, which actually has been examined with respect to its interaction with the effect of following
phonological context (Guy, 1991a). The general observation about morphological class is that past-
tense forms show deletion less frequently than non-past-tense forms, and that weak past-tense (e.g.,
missed, walked) forms show less deletion than strong (irregular) past tense (e.g., kept) forms (Coetzee
and Pater, 2011; Guy, 1991a). However, Tagliamonte and Temple (2005) found morphological class did
not significantly condition CSD in York (UK) English, and argued that the differing deletion rates by
morphological class are instead due to preceding phonological context (which is correlated with mor-
phological class) (see Hazen, 2011 for a similar interpretation). We will include morphological class as
a control variable in our model, but will not discuss it any detail.

Within the sociolinguistic literature more generally, variable processes are often thought of as rules
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can be indexed with a probability of application, which determines ‘the ratio of cases in which the
rule actually does apply to the total population of utterances in which the rule can possibly apply’
(Labov, 1969). Our main interest here, however, is not variability per se, but the variable influence
of phonological information that spans across word boundaries. This formalization of rule variability
by itself does not, however, help account for why cross-word processes should be more variable than
within-word processes—in fact, the same processes that are essentially invariable within words are often
(more) variable in their application across word boundaries, e.g. flapping in North American English
(Nespor and Vogel, 1986).

Relevant to our present discussion, Guy (1991b,a) proposed an account of the morphological effects
observed in CSD, which provides a partial account for the asymmetry between within-word appli-
cations and across-word applications of rules when it comes to their degree of variability. Combin-
ing Labov’s variable rules with the model of lexical phonology, Guy argues that if the phonological
environment for a process is met at each step in derivational theory, it will get multiple opportuni-
ties to apply. This ‘exponential’ model of variable rule application captures the differences between
mono-morphemes, and irregular and regular past-tenses in their CSD rate. Guy (1991a) discusses some
predictions of this model for the effect of following conditioning environment, but this model makes
no prediction about how pauses or other factors affecting the availability of a following word should
interact with the effect of a following word.

Other approaches to variability within phonological theory have modelled variability by positing
that speakers have internalized multiple grammars, grammars with partially ranked constraints, prob-
abilistically ranked constraints (Boersma and Hayes, 2001), constraints indexed to certain lexical items
or lexical strata, or weighted constraints (see Anttila, 2007 and Coetzee and Pater, 2011 for review).
Work in this vein develops formal grammatical models of how different factors condition a variable’s
rate of application, often to address higher-level questions such as: what the set of possible patterns of
variation are for a given variable, across dialects (e.g. why is deletion rate never higher before vowels
than before consonants), and why variability occurs in some contexts but not others (e.g. in codas but
not in onsets, for CSD). For example, Coetzee and Kawahara (2013) propose an account for why high
frequency words are more likely to undergo deletion in CSD, by weighting faithfulness constraints
depending on the lexical frequency of the words involved. The idea that the effect of phonological
environment external to a word (like the onset of a following word in the case of CSD) might interact
with factors like pause duration and word frequency has not been explored, however, with the notable
exception of Coetzee (2009), who reports that frequency does not interact with the effect of the phono-
logical environment in an experimental test of which factors affect intuitions about the likelihood of
t/d deletion. Such interactions between measures of frequency, or more complex probabilistic mea-
sures (like the conditional probability of a following word), are not part of what existing formal models
can capture. If they turn out to be real, this would require some modification of these models.

1.2 Variable Processes in Prosodic Phonology

Variable phonological processes have also been central in another, largely separate literature, that of
prosodic phonology (Kaisse, 1985; Nespor and Vogel, 1986; Selkirk, 1986). Prosodic phonology is con-
cerned with the representation of prosodic phrasing in sentences, and one source of evidence is sandhi
processes. In prosodic phonology, particular processes are associated with specific prosodic domains,
and effectively serve the purpose of encoding phonological domains. Some processes have been char-
acterized as ‘fortition’, such as the strengthening observed at the beginning of prosodic domains and
related phonological phenomena (see Keating, 2006, for a review), other have been characterized as
‘lenition’ within prosodic domains (Kingston et al., 2008; Katz, 2016).
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A recurring observation in this literature is that sandhi rules tend to be inherently variable, and af-
fected by speech rate (e.g. Hasegawa, 1979; Kaisse, 1985; Kiparsky, 1985). The reason why phonological
processes that span word boundaries tend to be more variable than word-internal processes is usually
not discussed. Some models assume that phonological processes apply categorically within particular
types of prosodic domains, for example, a process might apply within the phonological phrase, but not
across phonological phrase boundaries (e.g. Nespor and Vogel, 1986; Selkirk, 1986). Nespor and Vogel
(1986) try to explain some types of variability as being due to variability in the choice between different
phrasing options. The reason tapping across word boundaries, for example, is variable, is linked to
variability in phrasing options. If different levels of prosodic structure differ in how variable they are,
this perspective could in principle account for some of the structure in the variability that we observe:
The greater variability of sandhi processes compared to within-word processes could be seen as a con-
sequence of the greater level of variability in the assignment of higher level prosodic structure. Such an
explanation would be non-circular if independent criteria to establish phrasing can be established. For
the most part, however, the variability of cross-word phonological processes is taken as a given in this
literature. We know of no model in this domain that would predict gradient modulating effects of the
effects of the phonological content of upcoming words, that is, the types of effects we examine here.

1.3 Variability in Phonetics and Articulatory Phonology

Some sandhi processes clearly seem categorical, for example gemination in Sardinian (Ladd and Scob-
bie, 2003), or liaison in French (Post, 2000). But others may be inherently gradient, such as place assim-
ilation across word boundaries, which tends to be variable and involve various degrees of assimilation
(cf. Nolan, 1992; Niebuhr et al., 2011, for review). CSD might also fall into this class of gradient process.
Even when it sounds like [t] or [d] is deleted, the underlying gestures are often still present, but ei-
ther overlap with adjacent gestures or are not fully realized, leading to the appearance of deletion. Such
‘hidden’ gestures have been reported for assimilation and coarticulation patterns (Hardcastle, 1985;
Barry, 1985, 1992), but also for CSD (Browman and Goldstein, 1990). Browman and Goldstein (1990)
discuss renditions of “perfect memory”, in which the words where either separated by an intonational
phrase or produced as a single prosodic phrase. In the latter type of rendition, the [t] was often not
audible (and would therefore likely be transcribed as deleted), and yet articulatory evidence suggests
that the gesture was partially realized. More evidence that CSD is better characterized as a gradient
phenomenon rather than a variable categorical rule is presented in Temple (2014).

Browman and Goldstein (1990, 1992) proposed that all examples of ‘fluent speech alternations’ are
due to such gradient changes in the articulatory gestures involved, rather than due to the application of
categorical phonological processes. Relevant for our discussion here, they argue that in certain prosodic
configurations, gestures can gradiently change with respect to their degree of overlap, and with respect
to the degree in gestural magnitude. These effects, they argue, will be modulated by the strength of
prosodic boundaries and other prosodic factors: The lower degree of lengthening at weaker prosodic
boundaries will lead to greater gestural overlap; the lower amount of time for articulatory movement
in weak prosodic positions will make it more likely that segments will appear be to be reduced or even
deleted. This latter effect of a decrease in magnitude of gestures in weak positions is related to the very
common idea that hypoarticulation is a form of effort reduction (Lindblom, 1990; Kirchner, 1998). This
account predicts that, more generally, prosodic structure can interact with the gestural score and cause
greater or lower overlap or greater or lower gestural magnitude under certain circumstances. Prosodic
boundaries induce a slow down of the gestural movements, which within Articulatory Phonology is
often though of as a separate π gesture (Byrd and Saltzman, 2003). The greater the magnitude of the π

gesture, the greater the modulation of the gestural score.
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The view from Articulatory Phonology therefore provides a way to interpret modulating effects of
prosodic boundaries on sandhi processes, and makes predictions that partially overlap with those of
the PPH explored here. For example, AP predicts that pause duration should have an effect on CSD:
The greater slow-down at prosodic boundaries should decrease gestural overlap and hence make the
appearance of CSD less likely (Browman and Goldstein, 1990, 1992). Although not discussed in their
papers, it also predicts that pause duration should modulate the effect of the following environment
on CSD, since greater pause duration will necessarily come with smaller degree of gestural overlap.
However, even if CSD often involves gestural overlap or gestural undershoot, this does not mean that
CSD is not planned, and that the locality of production planning should not matter. Whalen (1990),
for example, argues that coarticulation is largely planned and argues against the idea that it can be
explained as an automatic effect of the temporal overlap of gesture in production, as is sometimes
assumed in AP and related overlap accounts. The PPH makes predictions about the locality of planning
effects, be they categorical as in the case of deletion or gradient as in the case of gestural overlap. If it
is correct, we should be able to see additional effects of production planning factors when holding
the durational and prosodic factors constant that AP predicts to affect gestural realization, as we will
outline in section 2.

1.4 Variability and probabilistic reduction

Finally, variable phonological process have more recently figured prominently in the literature on prob-
abilistic reduction. While a basic relationship between reduction and probability has long been estab-
lished (e.g. Jespersen, 1922; Zipf, 1929), this relationship has more recently become a central concern
in the field, dubbed the ‘Probabilistic Reduction Hypothesis’ in Jurafsky et al. (2001). The idea is sup-
ported by findings that show that frequent words and words that are highly predictable in a certain
context tend to be reduced in terms of their phonetic duration, and/or with respect to their segmental
content. Such effects are often seen as a rational use of resources from an information-theoretic per-
spective: Highly probable words may be easier to retrieve for speakers during planning and easier to
recover for listeners in perception (cf. Jurafsky et al., 2001).

CSD has been found to be affected by word frequency in several studies that explore probabilistic
reduction in word-final coronal stops (e.g. Gregory et al., 1999; Jurafsky et al., 2001; Bybee, 2000; Coet-
zee and Kawahara, 2013) and word-medial coronal stops (Raymond et al., 2006). A recurring finding
is that CSD is more likely to apply in frequent words compared to infrequent words (see also Pluy-
maekers et al., 2005; Gahl and Garsney, 2006; Guy et al., 2008). However, Walker (2012), in a study
of CSD in Canadian English, found that word frequency does not significantly impact deletion once
lexically-specific effects and interactions are accounted for. Gregory et al. (1999) and Jurafsky et al.
(2001) explored the effects of various other measures of predictability on CSD and vowel reduction,
in addition to word frequency, such as conditional probability or mutual information in two-word se-
quences. To our knowledge, this literature has not yet explored whether frequency or other measures
of predictability modulate the effect of a following environment. We return to why such effects would
be expected in section 2.3.3

1.5 Summary

The variability of CSD has figured prominently in a several different strands of research. The goal of
this paper is to relate aspects of this variability to the locality of production planning. Considering
factors affecting planning scope can help rationalize some of the previous findings, and produces new
predictions about the structure of the observed variability. One main focus in exploring these pre-
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dictions how factors affecting production planning modulate the effect of the phonological content of
upcoming words on CSD.

2 Variability and production planning

This paper explores a simple idea about one source of the variability of CSD: The effect of the phono-
logical content of an upcoming word on the likelihood or degree of deletion should be modulated by
factor affecting the likelihood that the upcoming phonological context could be planned in time to exert
its effect. More generally, we argue that one source of variability in the application of sandhi processes
is the locality of phonological encoding.

At least since the 1970s, it has been well known from studies of speech errors (Fromkin, 1971; Gar-
rett, 1988) and experimental studies of production latency (Sternberg et al., 1978) that syntactic and
semantic information is often planned over a relatively wide window, while phonological detail is
planned in a much narrower planning window. The size of this narrow planning window remains
controversial. Levelt (1989, 1992); Wheeldon and Lahiri (1997) claim that the planning window for
phonological encoding comprises only about one phonological word, some authors hold that it can be
as narrow as a syllable (Schriefers, 1999; Rastle et al., 2000), or even a single segment (Kawamoto et al.,
2015). Whatever the minimal planning unit may be, many findings suggest that speakers preferentially
plan phonological detail in small increments rather than across many words or even an entire utterance
(cf. Griffin, 2003).

The recent literature converges on the idea that there may not be a fixed window size for the scope
of phonological planning. Rather, the window size appears to be flexible, and varies by time pressure
(Ferreira and Swets, 2002) and task (cf. Costa and Caramazza, 2002; Wagner et al., 2010; Konopka, 2012;
Wheeldon, 2012; Fuchs et al., 2013). Crucially, the window for planning of phonological encoding can,
under certain circumstances, include multiple words (Ferreira and Swets, 2002; Griffin, 2003; Jescheniak
et al., 2003; Wagner et al., 2010)—as the very existence of sandhi processes suggests.4 The idea is then
that the reason sandhi processes are variable might simply reside in the variability of planning scope
in speech planning. Whether an upcoming or preceding word will be available at the time the current
word is planned will depend on the factors that have been shown to affect planning scope. In this paper,
we explore whether these same factors modulate the effect of upcoming phonological information on
CSD. In the following section, we review the major factors that are considered to condition the window
of production planning.

2.1 Prosodic Boundaries and Constituency

It is now often assumed that there are two counteracting pressures determining planning scope: one
is to initiate speaking as soon as possible and pre-plan less, perhaps to relieve working memory load
or to avoid missing one’s turn; the other is to talk fluently, and failing to plan ahead sufficiently can
result in pauses and disfluencies (cf. Fraundorf and Watson, 2008; Swets et al., 2013). If an upcoming
word has not been sufficiently planned after the offset of the first, a pause or other type of disfluency
will result (e.g. Fox Tree and Clark, 1997). Also, Griffin (2003) reports that when planning a two-word
sequence, the latency before the utterance reflects a speaker’s effort to articulate the two words without
a pause separating them, at least under certain circumstances, suggesting that pauses (in this case a
pre-utterance pause) reflect planning (cf. Ferreira, 1991).

Compatible with this is the observation that pauses tend to align with constituent boundaries (Cooper
and Paccia-Cooper, 1980, and many others), and that one factor decisive for whether two words are
planned together is whether they form part of a single syntactic constituent (Wheeldon, 2012; Fuchs

7



et al., 2013), which correlates with forming a meaning unit. The corpus we will examine here is not
syntactically annotated, hence we cannot test for such effects directly. However, syntactic constituency
and semantic cohesiveness correlate with prosodic phrasing, so our measures of the strength of the
prosodic boundary between two words will include some information about their relationship.

The prosodic strength of the boundary between two words might not simply reflect planning scope,
but also influence planning scope, such that planning an upcoming word is less likely across stronger
boundaries (cf. Ferreira, 1993). Independent of whether prosodic boundaries directly constrain plan-
ning scope or simply reflect other factors that do, the strength of a prosodic boundary between two
words can serve as a proxy measure to gauge the likelihood that the phonological information in the
second was available when the first one was planned, and hence should modulate the effect of the
phonological content of an upcoming word in CSD. The PPH predicts no such effect of the strength of
a following boundary on the effect of the preceding environment.5

There are many measures of prosodic boundary strength, and for simplicity we will focus in this
paper on the presence and duration of pauses (Goldman-Eisler, 1972; Grosjean and Collins, 1979; Price
et al., 1991; Krivokapić, 2007; Kendall, 2013). In sociolinguistic literature on CSD, a following pause is
treated as an environment on par with that of a following consonant or a following vowel. The per-
spective we take here looks at pauses very differently: Pauses modulate the distances to the following
consonantal environment. Of course, beyond a certain pause length, it is very unlikely that an upcom-
ing word would be planned, and in this limiting case pause, or rather, the null environment, is indeed
a separate type of context. But treating all pauses as a separate environment might lead to misleading
results, and obscure the fact that pauses might modulate the effect of the phonological material that
follows them.

2.2 Speech Rate

One relevant factor affecting planning scope is speech rate. Wagner et al. (2010) used a direct ma-
nipulation of cognitive load to show that planning scope is reduced under cognitive load, and that a
more incremental production strategy with a lower speech rate is cognitively less demanding than full
planning. If a lower speech rate is associated with more incremental planning and a smaller planning
window, we might expect the influence of the following environment to be reduced with a lowering
of the speech rate. Lower speech rate has also been shown to lead to more boundaries (Turk, 2010),
and also to stronger phonetic cues to boundary strength (Beckman and Edwards, 1990; Sugahara and
Turk, 2009). A reviewer points out that it is not clear whether speech rate will affect planning scope or
vice versa: a greater planning scope might simply enable faster speech. While we are mostly interested
in whether speech rate modulates the effect of the following phonological environment, we note that
higher speech rates are generally associated with more casual speech and greater reduction, so CSD
should be more common for faster speech (cf. Guy, 1980a; Guy et al., 2008).

2.3 Measures of Word Probability

The likelihood of whether a speaker begins planning an upcoming word while planning the fine detail
of the current word will depend on the accessibility of the two words. A first factor that might be
relevant is the probability of the word that potentially undergoes CSD. One simple proxy measure for
this probability is the frequency of the word in a large corpus, which has already been observed to
correlate with CSD rate (Jurafsky et al., 2001). Of interest to us is whether word frequency plays a role
in conditioning the rate of deletion, but also in modulating the effect of the phonological context of an
upcoming word.
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The effect of frequency on the production of single word utterances is relatively straightforward.
The latency of producing the names of objects that have a high frequency is shorter than that of low
frequency names (Oldfield and Wingfield, 1965; Goodglass et al., 1984), presumably because frequent
words are easier to retrieve and plan. Other studies have found that measures of familiarity and age of
acquisition, while correlated with frequency, are actually a better predictor of naming latency (Carroll
and White, 1973; Morrison et al., 1992; Snodgrass and Yuditsky, 1996).6 The level of representation
responsible for frequency effects in speech production remains controversial, however. Most models of
phonological planning distinguish at least two stages, the retrieval of a general lemma corresponding
with general lexical information and syntactic information associated with words, and a second stage
of phonological retrieval and planning (Dell and O’Seaghdha, 1992; Levelt, 1992; Goldrick and Rapp,
2007). Some models locate the role of frequency at the point of phonological retrieval; that is, more
frequent phonological word forms are retrieved faster (Levelt et al., 1999). Other models locate the role
of frequency at ‘lemma selection’, when a certain concept is retrieved (Alario et al., 2002). A recent
study trying to arbitrate between these views found that frequency effects operate at all levels, while
age of acquisition might be specific to the phonological level (Kittredge et al., 2008).

The level of representation at which frequency takes effect turns out to be crucial for the predictions
of the PPH for multiple word utterances, such as those containing a t/d-final word followed by another
word. If frequency effects operate at the point of phonological retrieval, but do not affect the relative
timing of retrieval at the lemma level, then we might expect that in a two-word sequence a higher fre-
quency of the first word will have the effect that its phonological form is planned earlier relative to the
phonological retrieval of the second lemma. The likelihood of the phonological form of the second form
being available at the point when that of the first word is planned should then be lower. Concurrent
with this prediction is the observation by Miozzo and Caramazza (2003) that in single word utterances,
frequent distractors have a smaller interference effect on production latency than low frequency distrac-
tors. The proposed explanation is that frequent words are planned earlier and hence suppressed earlier
relative to the target word, and therefore interfere less with its realization. The prediction of the PPH
would then be that CSD should be less likely to be affected by the phonological shape of the upcoming
word in more frequent (t/d-final) words.

It is not obvious, however, that the effect should go in this direction. A higher frequency of the first
word has been associated with an increase of semantic interference due to the second word in multi-
word utterances (Konopka, 2012). This would suggest that the lemma of the second word is retrieved
more quickly relative to the first word as frequency of the first word increases, in line with other studies
showing frequency effects for phonological planning at higher levels of representations (Alario et al.,
2002; Kittredge et al., 2008). If this is true, then it could be that the phonological shape of the second word
is also sooner available relative to that of the first word. Under this scenario the PPH would make the
opposite prediction, that CSD should be more likely to be affected by the phonological shape of the
upcoming word, the higher the frequency of the t/d-final word.

We therefore do not have a clear prediction with respect to the modulating effect of frequency. How-
ever, we note that whether phonological retrieval of a word happens sooner or later relative to a pre-
vious word is independently testable; there simply has not (to our knowledge) been a study which
provides direct evidence on this point. Examining frequency effects in cross-word applications of a
variable process, such as CSD, might provide evidence as to the level of representation at which fre-
quency effects operate in general.

Whether a following word will be planned at the same time as a preceding word may also depend
on the predictability of the second word. Given our interest in the effect of the phonological shape
of the following word, we also want to include a measure of predictability for that word. There are
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multiple ways to quantify the local predictability of a word in its context, and several have been related
to degree of reduction in the prior literature.

A simple measure of this would be the frequency of the upcoming word, which serves as an estimate
of its prior probability. However, from the point of view of production planning a following word with
a high frequency might not necessarily be likely to be part of the same planning domain. Suppose,
for example, that the following word is the first word of a new syntactic/semantic constituent or of a
new clause. Since production planning is constrained by syntactic constituency (Wheeldon, 2012; Fuchs
et al., 2013), it might actually be less likely to be anticipated than a low frequency word within the same
constituent. In English, the first words of new constituents are often high frequency words (function
words like determiners or prepositions), and words that by themselves for a separate constituent are
also often high frequency words (e.g., pronouns or adverbs). In other words, in the absence of having
a way to control for syntactic structure (which is not annotated in our corpus), the frequency of the
following word (which we in principle predict should facilitate with the degree of influence of the
following phonological environment) might actually be correlated with constituency breaks (which we
predict should reduce the effect of the following environment).

A more sophisticated measure is joint probability of two words, also called their ‘bigram frequency’
or ‘string frequency’, which can be estimated by the frequency of the two-word string in a large corpus,
and has been shown to correlate with reduction (Pan and Hirschberg, 2000). According to Jurafsky
et al. (2001), most researchers interested in effect of word cohesion use measures that control for the
frequency of one or both words instead of taking the overall bigram frequency. We followed the sug-
gestion of a reviewer and looked at the conditional probability of the following word given the first
word (calculated as described in Sec. 3), as an index of the availability of the following phonological
context. This conditional probability is equivalent to the bigram probability divided by the probability
of the first word, and should only be high if there is a predictive relationship between the preceding
and the following word.

2.4 Other measures

There are several potentially relevant factors influencing production planning that we do not explore
in this paper. The first is the length of the adjacent words, which has been argued to correlate with
prosodic boundary strength (cf. Ferreira, 1991; Watson and Gibson, 2004; Krivokapić, 2007). Griffin
(2003) reports that when planning a two-word sequence, the latency before the utterance increases
when the first word is shorter. One interpretation of this result is that speakers spend more time plan-
ning the second word when the first word is short in order to avoid pauses and disfluencies between
the words. However, this result was obtained in a task in which participants were explicitly instructed
to say the words avoiding to pause between them, and it is not obvious that this strategy would also
be used in other tasks or even in spontaneous discourse. Since we will not look at the effect of the
size of adjacent words, we will not discuss this further here. A second factor we will not consider is
neighborhood density. Gahl et al. (2012, 793) present evidence that words in dense neighborhoods are
shorter and contain more reduced vowels, suggesting a facilitative effects of dense neighborhoods on
production planning—in contrast to the greater difficulty in processing words in dense neighborhoods
in perception. Finally, there are individual differences in both planning efficiency (Mortensen et al.,
2008) and scope (Schriefers, 1999). Swets et al. (2014) show that planning scope correlates with working
memory as measured in a reading span task, and found that speakers with high or low working mem-
ory showed very similar utterance initiation times when looking at utterances of similar length and
complexity, but different planning scopes. The planning scope was evaluated by looking at measures
of eye-gaze. Speakers with high working memory showed more evidence for advance planning than
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speakers with low working memory. Wagner et al. (2010) used a direct manipulation of cognitive load
to show that planning scope is reduced under cognitive load, and that a more incremental production
strategy is cognitively less demanding than full planning. Our data set does not lend itself to explore
the effects of individual differences or of cognitive load, but it is clear that the PPH would predict
correlations with he application rate of sandhi processes.

2.5 Summary

Our main research questions, already anticipated in the introduction, are: (1) How does duration of a
pause following the coronal stop (which serves as a proxy for boundary strength) affect deletion rate?
(2) How does boundary strength (i.e. pause duration) modulate the effects of surrounding segments
on deletion rate? (3) How do other factors influencing the size of the planning window in production
planning, such as measures of word predictability and speech rate, modulate the effects of the follow-
ing phonological context on deletion rate? The Production Planning Hypothesis for CSD makes several
predictions. First, the PPH predicts that the length of the following pause will gradiently reduce the
probability of deletion. Second, the size of the prosodic boundary will also modulate the relative effect
of upcoming segments, where the influence of the following segment will be neutralised before long
pauses. Finally, words with higher predictability may be planned faster, and thus reduce the influence
of upcoming phonological material. In the following, we first describe the dataset used in this study
to explore these questions, and examine empirical plots (Sec. 3); fit a statistical model to test our pre-
dictions (Sec. 4); and then discuss the model’s results with respect to our research questions and the
broader issues raised at the outset (Sec. 5).

3 Data

We first describe the dataset of coronal stop realization used in this study, then describe the factors
which are included in our statistical model of CSD rate: those which relate to our research questions
(phonological context, pause length, speech rate, word frequency), and other factors affecting CSD rate
which are included as controls.

3.1 Dataset

The dataset used for analysis was taken from a corpus of spontaneous speech from the 2008 season of
Big Brother UK (Sonderegger et al., 2016), consisting of 14259 tokens of words with consonant clusters
containing underlying word-final t/d segments from 21 speakers, recorded over three months. Ortho-
graphic transcriptions of the corpus were force-aligned with the audio files using FAVE (Rosenfelder
et al., 2011). Further details of the annotation process and dataset are given in are given in Sonderegger
et al. (2016).

The dataset was manually annotated by four phonetically-trained research assistants for surface re-
alisation of word-final t/d, phonological context surrounding the t/d segment (surface realizations of
preceding and following phones), and presence and duration of any pause following the t/d. To anno-
tate the coronal stop, annotators chose from eight possible realisations of t/d, including ‘burst’, ‘glottal
stop’, ‘glottalized vowel’, ‘stop closure’ and ‘none’ (no acoustic cues to t/d presence or perception of
presence). Annotators used evidence from the spectrogram, waveform, and perceptual judgement. For
the purposes of the analysis in this paper, any instance of surface realization (i.e. any annotation besides
‘none’) was taken as a case of non-deletion.
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In the cases where the t/d was followed by a coronal stop (e.g., want to), t/d was taken to be realised
if a separate t/d was present following the closure. In this sense, t/d segments in this context were only
treated as realised if two separate t/d segments could be clearly observed. Since we do not have any
articulatory data to match the acoustic data, we cannot test whether what our annotators marked as
deleted [t,d]s might in fact involve gestures that were not fully realized or overlapped with adjacent
gestures to give our annotators the impression that they were deleted. These annotations therefore have
to be treated as abstractions over a range of degrees of reductions, as is standard in corpus studies of
CSD.

Pauses were annotated by manual adjustment of pauses inserted by the forced aligner. Each force-
aligned pause of less than 30 msec was set to be in fact absent (0 msec duration), as pauses shorter
than this duration are likely to reflect aligner errors or low-amplitude periods of speech, such as stop
closures. For each force-aligned pause of greater than 30 msec, annotators were instructed to correct
the boundaries to line up with the end of the previous segment and the beginning of the next segment.
More precise criteria were not given (for example, where the right edge of a pause preceding a stop
closure should be placed), but annotators discussed problem cases as they arose, and attempted to
keep their criteria synchronized. The goal of this semi-automatic pause annotation method was to
improve on simply using force-aligned pause boundaries, which we believe it does. However, the
noise introduced by various sources in this process (forced aligner, 30 msec-cutoff, manual annotation)
could skew the distributions of pause durations in the dataset, and may be in part responsible for the
heavily right-skewed distribution of pause durations.

Speech rate was calculated using the force-aligned transcriptions as the number of syllables per
second within a phrase, defined as an interval of speech by the speaker, bounded on each side by at
least 60 msec of silence (e.g. force-aligned pauses) or non-speech.7 Word frequencies were calculated as
the count per million of a wordform in the full corpus (21 speakers).

Three sets of tokens were excluded. One L2 English speaker was excluded due to near-categorical
deletion, presumably due to first language influence (L1 Thai). As most speakers used non-rhotic di-
alects, all tokens of words with word-final /rt/ and /rd/ clusters were removed (Tagliamonte and
Temple, 2005). Finally, 1804 points were excluded where the conditional probability measure could not
be reliably calculated, due to no bigrams (combination of the t/d-final word and the following word)
being present in the corpus used to estimate conditional probability (see further discussion below: Sec.
3.2.4). 11504 tokens from 20 speakers were used in the final analysis.

These 11504 tokens correspond to 397 word types, of which 161 correspond to only one token, and
135 correspond to at least 5 tokens. The overall deletion rate across all word tokens is 70.1%; the type-
level deletion rate, averaging across the observed deletion rates for each word type, is 41.3%.

3.2 Predictors

We model CSD rate as a function of a number of factors: those which relate to our research questions—
phonological context, boundary strength (represented as pause duration), word frequency, conditional
probability (of the next word, given the target word), speech rate—and additional factors which are
included as controls: morphological class (the main additional factor which is expected to affect CSD
rate based on previous work) and annotator identity. We first describe each predictor and the empirical
trend of how it affects CSD rate, with particular attention to effects of interest for testing the PPH.8 In
section 4 we report on the statistical modelling of the predictors and their relationships to the empirical
observations.
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Figure 1: Empirical plot of deletion rate as a function of (log-transformed) pause duration across the
whole dataset (left), and by following (middle) and preceding (right) phonological context. Dots are
deleted (at 100%) and non-deleted (at 0%) tokens, with jittered positions. Solid lines and shading are
non-parametric smooths (GAM, logit link) with 95% confidence intervals.

3.2.1 Phonological Context

FOLLOWING CONTEXT was coded using three levels: neutralising segments (i.e., coronal stops: /t/,
/d/, where we expected the highest deletion rate given previous findings), other consonants (besides
coronal stops), and vowels (n = 895, 7137, 3472).9 In contrast to most previous CSD studies, obser-
vations occurring in ‘neutralising’ environments were not excluded from the analysis. Whilst high,
deletion in these positions were not categorical (type: 83.9%, token: 91.1%), and their high rate of
deletion is captured in the statistical model (Sec. 4.1) as FOLLOWING CONTEXT=neutralising. The
order of deletion environments follows the pattern observed across previous CSD studies: deletion
rate is higher before consonants (type: 55.8%,token: 75.7%) than before vowels (type: 18.9%, token:
53.1%). Following Tagliamonte and Temple (2005), PRECEDING CONTEXT was similarly coded using
three levels—sibilant obstruents, sonorants, and non-sibilant obstruents (n = 2750, 8318, 436)—
which are expected to show progressively lower deletion rates. In our data, deletion rates were similar
for sibilants (type: 51.8%, token: 71.2%) and sonorants (type: 44.5%, token: 71.7%), and substantially
lower for non-sibilant obstruents (type: 25.9%, token: 31.6%).

We note that previous studies of CSD often use parametrizations of preceding and following phono-
logical context that are different in two ways from those used here. First, they are typically more com-
plex (with > 3 levels). The relatively simple coding used here allows us to best address our research
question of how the effect of phonological context is modulated by boundary strength, with maximum
statistical power, given that there is relatively little data for each phonological context as pause length
increases. Second, our coding for preceding context differs from much previous work on CSD in the
sociolinguistic and phonological variation literatures, which follow influential work such as Guy and
Boberg (1997); Labov (1989) largely based on North American varieties. We follow the coding of Taglia-
monte and Temple (2005) for our sample of largely British speakers, because this is the most authori-
tative CSD study to date on a British variety. The particular coding scheme chosen for preceding and
following context could skew our results, by not accounting for further distinctions among preceding
and following segments. This possibility should be mitigated by our inclusion of random intercepts for
both the t/d-final word and the bigram (see Sec. 4.1), which account for aspects of the t/d-final word
and the following word beyond terms included in the model.
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3.2.2 Pause

Of primary interest for our research questions are (1) whether pause duration, acting as a proxy for
boundary strength, gradiently affects CSD rate, independently of the effect of following context; (2)
whether it modulates the effect of phonological context. Figure 1 (left) shows the trend of deletion rate
as a function of pause length (using a generalized additive model-based smoother: GAM), across the
dataset. There is a clear gradient effect, where longer pauses correlate with lower deletion rate (Spear-
man’s ρ = −0.278). The middle and right panels of Figure 1 similarly show smoothers for deletion rate
as a function of pause length, for tokens in each phonological context. The effect of following context is
clearly modulated by pause length: longer pauses reduce the relative difference between the deletion
rates in different contexts, eliminating them for pauses of about 100 msec or longer (in the sense of
overlapping confidence intervals). The mitigating effect of pause length is especially clear for follow-
ing consonant and vowel contexts; the more variable pattern for neutralizing is likely due to the far
smaller amount of data in this context.

The effect of preceding context is not clearly modulated by pauses: the difference in deletion rate
between different contexts does not consistently increase or decrease as a function of the duration of
the following pause. We note that although Figure 1 shows empirical trends in probability space, all
the same qualitative observations made here based on Figure 1 also hold in log-odds space (which is
more relevant for the logistic regression models used below).

As can be observed in Figure 1, the distribution of pause length is right-skewed, and the data is
unbalanced as a function of pause length (mean = 65 msec, median = 0 msec, SD = 393 msec): 85%
of tokens (n=9844) have no following pause, and the remaining 15% of tokens are spread over a large
range,10 with only half (n = 830) having pause duration of more than 250 msec, a commonly used min-
imal cutoff for (binary) ‘pause’ in sociolinguistic studies (Kendall, 2013, Sec. 6.3). Tokens with pause
length in a given range are also unevenly distributed among phonological contexts, making estima-
tion of the effect of pause length on CSD rate less certain: this is why the smoothers in Figure 1 have
large confidence intervals in some regions, especially for longer pauses. We found that the unbalanced
distribution of pause length led to problems with overfitting to short- and no-pause data (in the statis-
tical model), if pause length is coded as a continuous variable. However, since our research questions
crucially involve the gradient effect of pause duration on deletion rate (and its interaction with phono-
logical context), we could not discretize pause duration as a binary variable. Instead, we coded pause
duration as an ordered factor, denoted PAUSE CLASS, with four levels: no pause (n = 9844), 0 < pause
< 105 msec (n = 423), 105 msec ≤ pause < 362 msec (n = 618), and 362 msec ≤ pause (n = 619).11

These cut points were chosen automatically, using the cut2 function in the Hmisc package in R (Jr et al.,
2015). This coding allows us to examine gradient effects of pause (increasing PAUSE CLASS), without
the estimates of these effects being skewed by the distribution of pause durations.

3.2.3 Speech rate

Both speech rate and frequency might be expected to affect CSD rate, based on previous work. For
our research questions, we are particularly interested in whether either factor modulates the effect of
following context, as is predicted if they correlate with the likelihood that the next segment is ‘available’
when production of the t/d is planned.

Speech rate was separated into two predictors: the mean speech rate for each speaker (SPEECH

RATE MEAN), and the difference between speech rate for a given token and the speaker’s mean (across
all tokens), for each token from a given speaker (SPEECH RATE DEVIATION). This coding allows us to
differentiate between increased deletion rate for ‘faster speakers’ from increased deletion rate for ‘faster
speech’ (within a speaker) (Snijders and Bosker, 2011); both might be expected to positively correlate
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Figure 2: Empirical plots of deletion rate as a function of speech rate and word frequency. Left: speech
rate deviation versus deletion rates, for each following phonological context (one dot per token, as in
Fig. 1). Middle: mean speech rate versus deletion rate (one point per speaker, errorbars are 95% CIs
on proportions). Right: word frequency versus deletion rate, for each phonological context (one point
per word/context pair). Solid lines and shading are GAM nonparametric smoother and 95% CIs for left
panel (logit link) and right panel (linear link); for middle panel, nonparametric smoother is LOESS with
95% CIs, and dotted line is a linear smooth.

with deletion rate.
SPEECH RATE DEVIATION is positively correlated with deletion, across tokens (ρ = 0.124): Figure 2

(left) shows that deletion rate generally increases for greater speech rates, as expected, but the slope
becomes less pronounced at higher speech rates. In order to allow for the observed nonlinear effect,
SPEECH RATE DEVIATION was coded as a restricted cubic spline with three knots (= 2 components),
which intuitively allows the fitted curve to have one ‘bend’, based on visual inspection (Figure 2 left).12

The effect of speech rate deviation also appears to differ by following context, in such a way that the
effect of following context is modulated by speech rate: in very slow speech (within a given speaker),
deletion rate differs minimally between following contexts. As speech rate increases, the difference
in deletion rate between contexts rapidly increases; around -1.25 syllables/second, this trend reverses,
and deletion rates in different contexts gradually become more similar for ‘normal’ and ‘fast’ speech
rates (deviation ≥ 0), showing a possible ceiling effect.

MEAN SPEECH RATE is positively correlated with mean deletion rate, across the 20 speakers (ρ =
0.52), with a roughly linear relationship — as in Figure 2 (middle), the line of best fit lies within the
confidence intervals of the nonparametric smoother. We thus code MEAN SPEECH RATE as a single
continuous variable. The effect of MEAN SPEECH RATE does not appear to strongly depend on following
context, based on exploratory plots (not shown).

3.2.4 Frequency, Bigram Frequency, Conditional Probability

Frequency FREQUENCY was measured as log-transformed corpus frequency (tokens per million) of
the t/d-final word in the Big Brother corpus. A token count of 1 in the corpus corresponds to 7.05
per million, and a log-transformed frequency of 1.953. Frequency is positively correlated with deletion
rate: t/d is deleted more often for higher-frequency words (ρ = 0.31). Figure 2 (right) illustrates that
the effect of frequency on deletion rate appears to differ by following context: the effect is stronger
(higher slope) before vowels (ρ = 0.48) than before (non-neutralizing) consonants (ρ = 0.26), and is
near-absent in neutralizing context (ρ = 0.030). As a result, the following context effect is heavily
modulated by word frequency: deletion rate differs maximally between contexts for very infrequent
words, and deletion rates in different contexts are progressively more similar for more frequent words.
The relationship between frequency and deletion rate within a given context is approximately linear;
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Figure 3: Empirical plot of deletion rate as a function of conditional probability across the whole dataset
(left), and by following phonological context (right). One point per bigram. Solid lines and shading are
GAM nonparametric smoothers and 95% CIs.

we thus code FREQUENCY as a single continuous variable.13

Conditional Probability To estimate the conditional probability of the following word given the pre-
vious word for observations in the dataset, we fitted a trigram language model using the lmplz function
in the KenLM language model toolkit (Heafield et al., 2013), which estimates the conditional probabil-
ity of n-grams using Kneser-Ney smoothing without pruning. The language model was fitted to the
spoken portion of the British National Corpus (BNC, ∼ 10 million words; British National Corpus,
2007), and hence estimates the cooccurrence probabilities of words in spoken British English, matching
the nature of our spoken British English corpus. We did not use the Big Brother dataset itself to calcu-
late conditional probabilities because it was deemed too small to give reliable estimates (0.14 million
words). (In particular, most bigrams in the CSD dataset analyzed here only occur once.) The language
model was used to assign a conditional probability of the following word given the t/d-final target
word, for each data point for which the corresponding bigram (combination of target word and next
word) occurred at least once in the BNC. The 1804 tokens corresponding to bigrams which did not
occur in the BNC were excluded from the dataset.

In empirical plots (Fig. 3 left), conditional probability shows a nonlinear relationship with deletion
rate across the dataset. The effect of conditional probability differs by following context (Fig. 3 right),
and this interaction shows a clear pattern: deletion rate decreases for words in all following contexts
for low to mid conditional probabilities, with progressively greater slope before neutralizing conso-
nants, other consonants, and vowels. The relationship between conditional probability and deletion
rate becomes flat for higher-frequency words preceding a consonant, but continues to be negative for
higher-frequency words preceding a vowel. The overall effect is that the conditional probability ef-
fect is heavily modulated by following context: deletion rate differs minimally between contexts for
bigrams with a low conditional probability, and deletion rates in different contexts are progressively
more different for bigrams with higher conditional probability. The relationship between conditional
probability and deletion rate for a given following context is roughly linear; we thus code CONDI-
TIONAL PROBABILITY as a single continuous variable, after log-transforming it to bring its distribution
closer to normality.14

3.2.5 Other variables

MORPHOLOGICAL CLASS was coded using two levels: past-tense forms (past) and all other words
(non-pasts). More deletion is observed in non-past-tense forms (type: 44.1%, token: 72.6%) than in
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past-tense words (type = 38.3%, token = 43.2%), as expected from previous CSD studies. This variable
is important to include in our analysis as a control, because it is collinear with PRECEDING CONTEXT

and FREQUENCY, which are crucial to our research questions: non-past forms disproportionately have
preceding segments which favor deletion and tend to have higher frequencies, compared to past tense
forms (e.g. Temple, 2013).

A number of other properties of the word are found to affect t/d rate in previous work, including
final consonant identity (t vs. d), whether the preceding consonant has the same voicing status as the
final t/d, and stress of the word-final syllable (e.g., Hazen, 2011). In contrast to MORPHOLOGICAL

CLASS, these effects are not directly related to our research questions; they are also typically weak.
Accordingly, we account for them, as well as any other idiosyncratic differences between words which
affect deletion rate, by including a by-word random intercept in the statistical model.

Properties of speakers may also affect CSD rate. Although CSD rate is generally found to exhibit
only weak effects of ‘social factors’ (speaker gender, social class, etc.), different English dialects show
markedly different deletion rates. This may underly some of the differences between speakers in the Big
Brother dataset, which are visible in the vertical spread of points in Figure 2 (middle): these speakers
come from a range of dialect regions. We account for any properties of speakers which affect deletion
rate (beyond SPEECH RATE MEAN), as well as idiosyncratic differences between speakers, by including
a by-speaker random intercept in the statistical model.

4 Analysis

4.1 Model structure

A mixed-effects logistic regression of coronal stop realisation (deleted vs. realised) as a function of the
predictors described above was fit to the data using the lme4 package in R (Bates et al., 2014). In order to
address our research questions, the model contained fixed effects for PAUSE CLASS, FOLLOWING CON-
TEXT, PRECEDING CONTEXT, SPEECH RATE MEAN, SPEECH RATE DEVIATION, word FREQUENCY, and
CONDITIONAL PROBABILITY; as well as interaction terms (for the possible modulation of phonologi-
cal context effects by factors associated with planning): PAUSE CLASS : FOLLOWING CONTEXT, PAUSE

CLASS : PRECEDING CONTEXT, FREQUENCY : FOLLOWING CONTEXT, CONDITIONAL PROBABILITY :
FOLLOWING CONTEXT, and SPEECH RATE DEVIATION : FOLLOWING CONTEXT. Fixed-effect terms for
MORPHOLOGICAL CLASS and ANNOTATOR identity (4 levels) were also included, as controls. Con-
tinuous predictors (SPEECH RATE MEAN/DEVIATION, FREQUENCY, CONDITIONAL PROBABILITY) were
centered and divided by two standard deviations. (For SPEECH RATE DEVIATION, this standardiza-
tion was done within tokens for a given speaker, to control for interspeaker differences in the range
of speech rate.) MORPHOLOGICAL CLASS was converted into a numeric predictor with range 1, then
centered. Discrete predictors with multiple levels (FOLLOWING CONTEXT, PRECEDING CONTEXT, AN-
NOTATOR) were coded with helmert contrasts; e.g., for FOLLOWING CONTEXT, the interpretations of the
two contrasts are (1) neutralising segments vs. other consonants (2) all consonants (neutralizing and
non-neutralizing) vs. vowels, and for PRECEDING CONTEXT, the interpretations of the two contrasts
are (1) sibilants vs. sonorants (2) {sibilants and sonorants} vs. obstruents.15 PAUSE CLASS (4 levels)
was coded using (three) orthogonal polynomial contrasts, corresponding to linear, quadratic, and cubic
trends.

The model was fit with the following random effects structure: (1) by-speaker, by-word, and by-
bigram intercepts, to control for differences in CSD rate beyond the effects of predictors included in the
model, and obtain accurate estimates of fixed-effect coefficients for properties of speakers, words, and
bigrams (i.e., CONDITIONAL PROBABILITY); (2) all possible by-speaker random slopes for all terms re-
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lated to our research questions, to control for variability in these effects across speakers: PAUSE CLASS,
FOLLOWING CONTEXT interactions with {PAUSE CLASS, SPEECH RATE DEVIATION, FREQUENCY, CON-
DITIONAL PROBABILITY}, PRECEDING CONTEXT interaction with PAUSE CLASS (as well as all subset
terms, e.g. main effect of FREQUENCY); (3) by-word random slopes, to do the same for variability across
words, for PAUSE CLASS only. (Models with further by-word random slope terms did not converge,
presumably due to there being too little data per word: 1–2 observations for many word types.) Cor-
relations between random-effect terms were not included, to avoid model over-parametrisation and
aid convergence. The random-effect structure in the model is as close as possible to ‘maximal’, in the
sense of Barr et al. (2013): as many random-slope terms as possible are included, such that the model
still converges, with terms prioritized which guard against Type I error in the fixed-effect coefficients
related to our research questions. (For example, by-speaker random slopes for interactions of PAUSE

CLASS with FOLLOWING CONTEXT help guard against significant effects driven by particular speakers,
which would spuriously support the predictions of the PPH.)

4.2 Results

The fixed-effects coefficients of the model are summarized in Table 1, with significances based on Wald
tests. We do not discuss the random-effect terms, which can be seen in Table 2. The coding system used
for the predictors means that the main effect coefficients can be interpreted at an ‘average value’ of other
predictors, for an ‘average’ speaker and word. For example, the PRECEDING CONTEXT 2 coefficient’s
interpretation is “the difference in deletion rate between non-sibilant obstruents and other consonants,
at average word frequency and speech rate, averaged across all pause classes, following segment types,
morphological classes, and annotators”. The intercept term thus predicts the ‘average’ rate of deletion
to be 19.5% (inverse logit of -1.415).

We also assess the importance of each term in the regression related to our research questions
(PAUSE, PAUSE:FOLLOWING CONTEXT, etc.: rows of Table 3), in a second way. For each such term,
we conduct a likelihood ratio test between the full model and a model with all fixed and random ef-
fects for this term dropped; χ2 and the corresponding significance for each test is reported in Table
3. These χ2 tests assess whether adding information about a variable improves the model, taking into
account both fixed and random effects and assessing all corresponding regression terms at once, thus
giving complementary information to the Wald test results (Table 1), which only assess individual fixed
effects.

We first discuss each of the effects relevant to our research questions, then briefly summarize other
effects. Because the effects of primary interest are difficult to interpret from the model table (due to
nonlinear terms and multi-level factors), we use the partial-effect plots in Figures 4–5 to visualize the
model’s predictions. These plots show predictions as a subset of predictors are varied, with other con-
tinuous predictors held at 0 (average value) and other discrete predictors held constant (at PRECEDING

CONTEXT = sonorant, FOLLOWING CONTEXT = consonant, PAUSE CLASS = none). Predictions (solid
lines, dots) and 95% confidence intervals (vertical lines, shading) are computed based on fixed effects
alone (without taking random-effect variances into account), and can be thought of as the prediction
for an ‘average’ word and speaker.

4.2.1 Pause

Pause duration has a strong negative effect on deletion rate (χ2(9) = 147.5, p < 0.0001), : for the main
effect of PAUSE CLASS, the linear trend is negative (β̂ = -2.086), highly significant (p < 0.001), and has
a much greater effect size than the quadratic or cubic trends (which do not reach significance). The
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Table 1: Summary of fixed-effect coefficients in the logistic regression model of coronal stop deletion:
coefficient estimates, standard errors, z, and corresponding p-value (Wald test). Coefficients are in
log-odds.

Predictor β̂ SE(β̂) z-value Pr(>|z|)

Intercept -1.415 0.288 -4.917 <0.001
Annotator 1 0.373 0.048 7.847 <0.001
Annotator 2 0.015 0.023 0.643 0.52
Annotator 3 -0.071 0.036 -2.002 0.045
Morphological Class -0.037 0.179 -0.204 0.839
Speaking Rate (mean) 0.759 0.259 2.932 0.003
Pause Class (linear) -2.086 0.296 -7.045 <0.001
Pause Class (quadratic) 0.283 0.307 0.922 0.356
Pause Class (cubic) -0.356 0.269 -1.324 0.185
Preceding Context 1 (sibiliants vs sonorants) -0.179 0.129 -1.383 0.167
Preceding Context 2 ((sib/son) vs obstruents) -0.350 0.137 -2.554 0.011
Following Context 1 (neutralising vs consonants) -0.774 0.302 -2.560 0.01
Following Context 2 ((neut/cons) vs vowels) -0.845 0.130 -6.522 <0.001
Conditional probability (log, standardized) 0.331 0.246 1.345 0.179
Word Frequency (log, standardized) 0.523 0.162 3.228 0.001
Speaking Rate Deviation 1 0.198 0.044 -4.479 <0.001
Speaking Rate Deviation 2 -0.937 0.165 -5.679 <0.001
Pause Class (linear) : Preceding Context 1 0.197 0.122 1.615 0.106
Pause Class (quadratic) : Preceding Context 1 -0.288 0.196 -1.471 0.141
Pause Class (cubic) : Preceding Context 1 -0.028 0.272 -0.103 0.918
Pause Class (linear) : Preceding Context 2 -0.245 0.259 -0.947 0.344
Pause Class (quadratic) : Preceding Context 2 -0.579 0.245 -2.358 0.018
Pause Class (cubic) : Preceding Context 2 -0.034 0.242 -0.139 0.889
Pause Class (linear) : Following Context 1 0.630 0.242 2.603 0.009
Pause Class (quadratic) : Following Context 1 -0.335 0.248 -1.350 0.177
Pause Class (cubic) : Following Context 1 -0.046 0.254 -0.180 0.857
Pause Class (linear) : Following Context 2 0.561 0.103 5.428 <0.001
Pause Class quadratic) : Following Context 2 -0.156 0.100 -1.565 0.118
Pause Class (cubic) : Following Context 2 0.053 0.106 0.498 0.618
Conditional probability : Following Context 1 -0.354 0.342 -1.037 0.3
Conditional probability : Following Context 2 0.021 0.165 0.127 0.899
Word Frequency : Following Context 1 0.225 0.128 1.753 0.08
Word Frequency : Following Context 2 0.208 0.055 3.792 <0.001
Speaking Rate Deviation 1 : Following Context 1 0.147 0.059 -2.491 0.013
Speaking Rate Deviation 1 : Following Context 2 0.103 0.023 -4.553 <0.001
Speaking Rate Deviation 2 : Following Context 1 0.371 0.209 1.778 0.075
Speaking Rate Deviation 2 : Following Context 2 0.071 0.086 0.832 0.405

interpretation of this effect is that longer pauses gradiently decrease deletion rate, in general (averag-
ing across phonological contexts). Figure 4 illustrates that this interpretation generally holds within
each different phonological context as well: deletion rate gradually decreases for progressively longer
pauses. (A possible exception is before vowels, where there may be a floor effect (deletion rate is always
very low).) This result is in line with previous work showing that binary ‘pause’, coded as a following
environment, affects CSD rate; it is novel in showing a gradient effect of pause duration, independent of
following context, as discussed further below.

4.2.2 Phonological Context

We first consider the main effect terms for phonological context. Confirming the empirical observations
and previous CSD research, following phonological context was a highly significant indicator of dele-
tion (FOLLOWING CONTEXT 1: β̂ = −0.774, p = 0.01; FOLLOWING CONTEXT 2: β̂ = −0.845, p < 0.001).
At average pause duration, vowels induce less deletion than consonants, with neutralising segments
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Figure 4: Partial effect plots for phonological context and pause duration: predicted deletion rate by
PAUSE CLASS and PRECEDING CONTEXT (bottom row) or FOLLOWING CONTEXT (top row), in log-odds
(left column) and probability (right column) space. Dots and errorbars indicate predictions and 95%
CIs with other predictors held constant.

inducing much higher rates. This is expected, given the near-categorical rate of deletion in the dataset
for neutralising environments.

The effect of preceding context also follows the expected pattern based on the empirical data and
previous work: sibilants, sonorants, and non-sibilant obstruents induce progressively less deletion, at
average pause duration. However, the effect size is notably smaller than that of following context and
is only weakly significant (PRECEDING CONTEXT 1: β̂ =−0.179, p = 0.167; PRECEDING CONTEXT 2: β̂ =
−0.350, p = 0.011), illustrating that preceding context has less influence on deletion rates than following
context, as expected (Schreier, 2005).

Of primary interest for our research questions is how pause duration modulates the effect of phono-
logical context, corresponding to the FOLLOWING CONTEXT:PAUSE CLASS and PRECEDING CONTEXT:PAUSE

CLASS interactions. The conditioning effect of PAUSE CLASS on FOLLOWING CONTEXT is highly signif-
icant (χ2(12) = 103.1, p < 0.0001) due to the terms corresponding to the linear trend of PAUSE CLASS

(interaction with: FOLLOWING CONTEXT 1: β̂ = 0.630, p = 0.009; FOLLOWING CONTEXT 2: β̂ = 0.561,
p < 0.001). The difference in deletion rate between different following contexts gradiently decreases as
pause duration increases, as shown in Figure 4 (top row). For each pause class, the effect of following
context shows the predicted ordering (vowels < consonants < neutralizing), but the size of this effect
greatly decreases. This modulation is predicted by the PPH, since the planning window should be less
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Figure 5: Partial effect plots for speech rate and word frequency: predicted deletion rate by SPEECH
RATE DEVIATION (top row) and FREQUENCY (bottom row) for different following phonological con-
texts, in log-odds (left column) and probability (right column) space. Lines and shading as in Figure 4.

likely to contain the following segment at stronger boundaries.
The interaction of PAUSE CLASS and PRECEDING CONTEXT is marginal at the p = 0.05 level (χ2(12) =

21.0, p = 0.051). The interpretation of this effect is less straightforward. Based on Figure 4 (bottom
row), we see that preceding context has a small effect on deletion rate when there is no pause, in the ex-
pected direction, but does not significantly affect deletion rate when there is a pause (of any duration)—
corresponding to overlapping confidence intervals for PAUSE CLASS != none. At face value, this effect
is inconsistent with the prediction of the PPH that preceding context should not be conditioned by
pause duration (as preceding context should always fall into the same local planning window). How-
ever, it is also notable that the effect does not show gradient modulation of the preceding context effect
as a function of pause duration (as for following context), suggesting that factors besides production
planning may be at play, as discussed further below. We note that an account of CSD in terms of ges-
tural overlap, as in Articulatory Phonology, might predict a modulation of the effect of the preceding
environment—as segments ‘stretch out’ more due to slow down at stronger boundaries, the effect of
the preceding segment might decrease. The observed trends might be an indication of such a gestural
effect.
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Figure 6: Partial effect plots for conditional probability: predicted deletion rate by CONDITIONAL PROB-
ABILITY for different following phonological contexts, in log-odds (left) and probability (right) space.
Lines and shading as in Figure 4.

4.2.3 Speaking Rate

Both measures of speech rate have significant effects on CSD rate. Speakers who speak faster on average
delete more frequently (SPEECH RATE MEAN: β̂ = 0.759, p = 0.003). In addition, faster speech (within a
speaker) generally leads to more deletion (SPEECH RATE DEVIATION 1, 2: β̂ =0.198, −0.937; p < 0.001,
p < 0.001), although the effect differs significantly depending on following context (χ2(8) = 24.9,
p = 0.0016; also the SPEECH RATE DEVIATION:FOLLOWING CONTEXT rows of Table 1). Figure 5 (top
row) shows that faster speech leads to more deletion up to about a speaker’s average rate (SPEECH RATE

DEVIATION = 0), after which the effect is less pronounced for following consonants and vowels, and
reverses direction in neutralizing context. How speech rate modulates the effect of following context
depends on whether we interpret the model’s predictions in log-odds or probability space. In log-
odds space, the difference in deletion rate between contexts seems to decrease at high speech rate. In
probability space, the difference between contexts decreases for progressively lower speech rates, as is
the case in the empirical data (Figure 5). Regardless of the interpretation of this effect, there are strong
speech rate effects on CSD rate, and speech rate deviation modulates the effect of following context.

4.2.4 Frequency

Word frequency has a significant positive effect on deletion rate: higher frequency words induce higher
rates of deletion (FREQUENCY: β̂ = 0.523, p = 0.001), averaging across phonological contexts. This find-
ing replicates earlier results (e.g. Jurafsky et al., 2001; Coetzee, 2009). Due to the inclusion of a by-word
random intercept, the significant frequency effect cannot be attributed to the influence of particular
lexical items (e.g. and, just). This result contrasts with claims that frequency does not affect CSD once
other factors and are controlled for (Walker, 2012).

Of interest for our research questions is the significant interaction of FREQUENCY with FOLLOWING

CONTEXT (χ2(4) = 15.9, p = 0.0032). The rows of Table 1 corresponding to this effect give its interpre-
tation: as word frequency increases, the effect size of following context reduces, resulting in following
context conditioning CSD to a lesser degree (Fig. 5, bottom row). This modulation of the following con-
text effect by word frequency mirrors the pattern seen in the empirical data (Figure 2), and has a natural
explanation in terms of production planning, under the assumption that higher-frequency words are
more likely than lower-frequency to be planned before the following phonological context is available.
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Coetzee (2009) found no such interaction in an experimental test of which factors affect intuitions about
the likelihood of t/d deletion.

4.2.5 Conditional Probability

Conditional probability does not significantly affect deletion rate (CONDITIONAL PROBABILITY: p =

0.179), averaging across phonological contexts. Of primary interest for our research questions is the
interaction of CONDITIONAL PROBABILITY with FOLLOWING CONTEXT, which the likelihood ratio test
suggests significantly contributes to model likelihood (χ2(4) = 12.7, p = 0.012). However, the cor-
responding fixed effect coefficients are not significantly different from zero (CONDITIONAL PROBABIL-
ITY:FOLLOWING CONTEXT 1: β̂ = −0.354, p = 0.3; CONDITIONAL PROBABILITY:FOLLOWING CONTEXT

2: β̂ = 0.021, p = 0.899). We interpret this discrepancy in the two ways of assessing the interaction
as follows. First, note that the effect size of the CONDITIONAL PROBABILITY:FOLLOWING CONTEXT

1 coefficient is actually relatively large—in particular, larger than the coefficients for the FREQUENCY

interaction with FOLLOWING CONTEXT—and in the direction predicted by the empirical plots (Figure
3), where we see a clear pattern suggesting that the influence of the following phonological context in-
creases with the conditional probability of the following word. The interpretation of this coefficient (see
Figure 6) is that the difference in deletion rate between a following t/d and other consonants increases
as conditional probability increases, as predicted in terms of production planning. (The coefficient for
CONDITIONAL PROBABILITY:FOLLOWING CONTEXT 2 has a very small effect size, and we interpret it as
effectively zero.) The ‘reason’ that the CONDITIONAL PROBABILITY:FOLLOWING CONTEXT 1 is not sig-
nificant, despite its large effect size, is its high standard error. This standard error, in turn, is likely large
due to the high degree of variability between participants: the size of this variability (0.427, 0.318: the
standard deviation for the by-speaker random slopes for FOLLOWING CONTEXT:CONDITIONAL PROBA-
BILITY terms in Table 2) is comparable to the effect size of the CONDITIONAL PROBABILITY:FOLLOWING

CONTEXT 1 term. Intuitively, this means that the model cannot reliably detect a group-level effect given
the degree of variability across speakers. This high inter-speaker variability also explains why the χ2

test is significant: it is the random effect terms that make CONDITIONAL PROBABILITY:FOLLOWING

CONTEXT significantly contribute to model likelihood. We do not have an explanation for the high
degree of inter-speaker variability, but note that future work could better test for the CONDITIONAL

PROBABILITY:FOLLOWING CONTEXT in a corpus with more speakers (rather than just 20) and more
data per speaker (the data in the Big Brother corpus is very unbalanced), to better estimate differences
between speakers. We conclude that the high effect size, direction, and significance (using the likeli-
hood ratio test) of the CONDITIONAL PROBABILITY:FOLLOWING CONTEXT effect provide some tentative
support for our hypothesis about how conditional probability modulates the following context effect,
but that this interaction merits more investigation in future work.

4.2.6 Other effects

The effect of MORPHOLOGICAL CLASS is in the expected direction (non-past-tense forms > past tenses:
MORPHOLOGICAL CLASS β̂ = −0.037), but is not significant (p = 0.839). This finding follows similar ob-
servations for British English (Tagliamonte and Temple, 2005) and Appalachian English (Hazen, 2011),
where morphological class did not significantly condition the rate of deletion. The effect of ANNOTA-
TOR is significant (rows 2–4 in Table 1), especially the effect of ANNOTATOR 1 (β̂ = 0.373, p < 0.001),
indicating that one annotator marked tokens as deleted less frequently than others. Although this effect
is unwelcome (ideally, annotators would be statistically indistinguishable from each other), we hope to
have controlled for the first annotator’s different behavior by including the ANNOTATOR term in the
model.16
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5 Discussion

This study has examined coronal stop deletion in a corpus of spontaneous British English. We discuss
our results in reference to our three research questions, which also bear on the broader motivations
for this study, repeated here: (1) How does duration of a pause following the coronal stop (which
serves as a proxy for boundary strength) affect deletion rate? (2) How does boundary strength (i.e.
pause duration) modulate the effects of surrounding segments on deletion rate? (3) How do other
factors influencing the size of the planning window in production planning, such as measures of word
predictability and speech rate, modulate the effects of the following phonological context on deletion
rate?

Our results also have practical implications for studying coronal stop deletion and other segmental
processes which can apply across word boundaries, and make predictions which can be tested in future
work.

5.1 Boundary strength

Our first research question was how boundary strength, here approximated by duration of the pause
following the t/d, affects deletion rate. We found that pause duration has a strong negative effect on
deletion rate, across phonological contexts. Crucially, this effect is gradient and independent of following
phonological context.

With PAUSE CLASS coded as a factor independently from following phonological context, larger
PAUSE CLASS in the statistical model steadily decreases deletion rate, corresponding to the clearly gra-
dient trend in the empirical data (Fig 1). If pause duration is interpreted as a proxy for boundary
strength, this result is unsurprising, given that gradient effects of boundary strength on segmental real-
ization at prosodic boundaries are common cross-linguistically (e.g. Byrd and Saltzman, 1998; Cho and
Keating, 2001; Fougeron and Keating, 1997; Fougeron, 2001).

Treating pause duration as gradient and independent of following context contrasts with previous
work on CSD, where ‘pause’ (coded using perceptual or acoustic criteria) is a binary variable coded as
one possible following context (e.g. as an alternative to a consonant or a vowel). Different studies have
found inconsistent effects of a pause coded in this way, with some finding that pauses pattern more
like consonants (higher deletion rate; African American English in Fasold, 1972; Wolfram et al., 2000),
or more like vowels (lower deletion rate; Philadelphia speakers in Guy, 1980a), or induce the least
deletion of any following context (Tagliamonte and Temple, 2005). These different effects are generally
attributed to dialectal differences, which is unusual, given that most factors influencing CSD rate (such
as preceding context and morphological class) have been found to have strikingly similar qualitative
effects across many dialects (Schreier, 2005).

Our results suggest an alternative possibility: different studies may have found different effects of
‘pause’ by discretizing the gradient effect of pause duration in different ways, or because of different
correlations of the presence of a pause with the identity of the following segment in the datasets used in
different studies. Previous studies of CSD have not interpreted ‘pause’ as raising or lowering deletion
rate, per se; we found that longer pauses markedly decrease deletion rate, when considered indepen-
dently of segmental context. This result suggests that pause duration (and any other correlates with
boundary strength) should be treated as independent of the following segment, and ideally as a gradi-
ent variable, in future work.17 These methodological changes may help to clarify the interplay between
segmental and prosodic factors in conditioning deletion rate, in line with Kendall’s (2013) suggestion
that variable processes can be better understood by a more detailed consideration of the role of prosodic
information (pauses and speech rate). The suggested methodological change applies more generally to

24



sociolinguistic, phonetic, and phonological studies of any variable process that can take place across
word boundaries, such as final [t]-deletion in German and Dutch (closely related to English CSD) or
Spanish /s/-lenition; in these literatures, ‘pause’ (as a proxy for boundary strength) is often treated as
a possible following context (e.g. File-Muriel and Brown, 2011; Schuppler et al., 2012).18

In the phonological variation literature on CSD in particular, ‘pause’ is typically treated as a follow-
ing environment independent of following context (e.g. Coetzee and Kawahara, 2013; Coetzee, 2004),
and this assumption informs the structure of the phonological grammar which is postulated to account
for the data: formal mechanisms (in previous work, Optimality Theoretic constraints) penalize deletion
before consonants, vowels, and pauses to different degrees. For the facts reported in this paper to be
accommodated in a grammatical account, a different kind of grammar would need to be developed
to account for the independent and gradient effect of pause on deletion rate, and how pause duration
modulates the following context effect, and it would have to be powerful enough to accommodate in-
teractions of phonological context with external factors such as frequency and conditional probability.
While Coetzee and Kawahara (2013) discuss how to accommodate a general effect of frequency on CSD,
their model does not allow for interactions of frequency and following phonological environment. A
more detailed discussion of the formal options is beyond the scope of this paper.

5.2 Modulation of contextual effects and the production planning hypothesis

5.2.1 Phonological context

Our second research question was how boundary strength modulates the effect of surrounding seg-
ments. We found that the length of the pause between the t/d and the following word strongly and
gradiently modulates the effect of the first segment of the following word: for longer pauses, there is
progressively less difference in CSD rate between words beginning with t/d, another consonant, or a
vowel; for pauses of above 362 msec, there is almost no effect of following context. This is particularly
striking for words in ‘neutralizing’ context: without a pause, deletion is near categorical (hence the
exclusion of these tokens from most studies of CSD); when there is even a short pause, deletion rate
drops to the rate expected before any other segment. This effect supports the PPH, which predicts that
due to the locality of production planning, the availability of upcoming information (i.e., the following
context) will be conditioned by boundary strength, and hence should have no effect after sufficiently
strong boundaries.

The following context effect is in a sense obvious—for a long enough pause, following material must
be invisible. However, it is not obvious a priori what ‘long enough’ means, and the fact that modula-
tion occurs even for very short pauses is consistent with the very local nature of production planning.
Following phonological context often has a large effect on whether variable segmental processes apply
(in sociolinguistic and phonetic studies). The prediction based on our results, if the PPH is right, is
that for any variable segmental process that can take place across a word boundary, prosodic boundary
strength should modulate the following context effect, in the same direction as observed here, given
the locality of production planning.

This modulation of the context effect by the duration of pauses is compatible with the predictions
of the production planning hypothesis, which predicts that due to the locality of production planning,
the availability of upcoming information (i.e., the following context) will be conditioned by boundary
strength, and hence should have no effect after sufficiently strong boundaries. It also receives a natural
explanation, however, under the view that the greater ‘slow down’ at stronger prosodic boundary will
result in less gestural overlap. Under the Articulatory Phonology analysis of t/d deletion, this predicts
a lower rate of cases in which it will appear that t/d deletion has taken place. This result is therefore

25



compatible with other interpretations.
The PPH does not predict a similar modulation of the preceding context effect by boundary strength

(decreasing effect as boundary strength increases), since the identity of the preceding segment will
always be available when the t/d is planned. Importantly, it does not predict that there will be no
interaction between preceding context and boundary strength, which could be due to sources besides
production planning. We already discussed before that such effects could be due to decreased gestural
overlap with increased lengthening preceding prosodic boundaries, and predicted by the account of
t/d deletion in Articulatory Phonology. Indeed, after discretizing pause duration into four classes, we
found a weak but significant interaction: preceding context has the expected effect when there is no
pause, but does not show an effect before pauses of any length. This interaction does not look like the
following context interaction—the effect of preceding context does not gradiently decrease for stronger
boundaries—but why does this occur? To some extent, it may be an artefact of how we discretized
pause duration: in the empirical data (Fig 1), where all pause lengths are considered, it is clear that pre-
ceding context does affect deletion rate for arbitrarily long pauses (in contrast to the following context
effect). There may also simply not be enough data before pauses (15% of the data; n=1660) to resolve
the effect size of preceding context (consistently found to be small in previous studies), or there may
be a psycholinguistically-motivated explanation unrelated to production planning, such as listeners
making less use of the acoustic cues associated with preceding context (e.g. formant transitions) in en-
vironments where a stop burst is likely (before a pause) (e.g. Steriade, 2009). Regardless of its source,
we argue that the observed weak modulation of the preceding context effect by pause duration does
not offer evidence against the production planning hypothesis.

5.2.2 Word frequency and speech rate

Our third research question was how factors beyond boundary strength modulate the effect of follow-
ing context on deletion rate. We consider word frequency and speech rate here, and turn to conditional
probability below. These three factors should affect the probability that the following segment is ‘avail-
able’ when the articulation of the final t/d is planned; thus, the PPH predicts that they should modulate
the effect of following context on deletion rate.

Frequency significantly affects deletion rate across phonological contexts, with t/d more likely to
delete in higher-frequency words. As noted above, this finding contrasts with some previous CSD
studies (Walker, 2012), but is unsurprising if CSD is viewed as a case of segmental reduction, given
that word frequency (or predictability) is often positively correlated with reduction probability in such
processes cross-linguistically (e.g. Jurafsky et al., 2001; Schuppler et al., 2012; Bell et al., 2009; Zipf, 1929;
Ernestus et al., 2006). What is important for our purposes is not the existence of an overall frequency
effect, but the fact that it significantly modulates the effect of following context: the higher the frequency
of the t/d-final word, the less its deletion rate depends on the identity of the following segment. This
effect is expected under the PPH if we assume that higher-frequency words are planned earlier relative
to the phonological retrieval of a following word.19 Based on our discussion in the introduction, the
direction of the effect is as expected if frequency effects operate at the level of phonological retrieval,
and leaves the relative timing of the lemmas unaffected. In this case, the phonological form of the
first word with a higher frequency will be planned earlier relative to the phonological retrieval of the
second word. As noted above, it remains controversial whether frequency effects arise only at the level
of phonological retrieval, and different assumptions about frequency effects might lead to a different
prediction about how word frequency modulates the following context effect. Our finding provides
additional motivation for a psycholinguistic study probing the availability of the phonological content
of a following word, as a function of the frequency of the first word; to our knowledge, such a study
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has not been done.
The PPH also predicts a modulation of the effect of following context by speech rate. If increased

speech correlates with a wider planning window, which we argued is plausible given prior results,
we should find an increase of the probability that the following segment identity is available when
the t/d is planned in faster speech, and we would expect the opposite effect in slower speech. These
predictions are not clearly borne out in our data (Fig. 5, top row). Although speech rate significantly
modulates the following context effect, the direction of this modulation (larger vs. smaller difference
in deletion rate between following contexts) differs for lower and higher speech rates, and depending
on whether we think in terms of log-odds or in probabilities. The effect can be roughly described
as capturing the pattern in the empirical data (Fig. 2 mid): different contexts have maximally different
deletion probabilities around average speech rate, and progressively more similar deletion probabilities
as speech rate is either increased or decreased. The pattern as speech rate is decreased (from mid to low
speech rate) is compatible with the PPH. As is apparent in the plot in Fig. 2, the deletion rate at the fast
end of the spectrum is very high indeed. The observed decrease of the context effect is not in line with
the predictions of the PPH, and we are not sure how to interpret this at this point.

5.2.3 Conditional Probability of the Following Word

We found only limited support for the hypothesis that the following context effect is modulated by the
conditional probability of the following word, possibly due to high interspeaker variability in the size
of the effect. We note, however, that we might be underestimating the effect of conditional probability,
which is confounded with two important variables: word frequency and syntactic constituency. As
observed in Jurafsky et al. (2001), estimates of bigram frequency are not very accurate compared to
estimates of word frequency, given the sparsity of even relatively frequent bigrams, even in a large
corpus (such as the BNC, used here).

Conditional probability is bigram probability divided by the first word’s probability (proportional
to its frequency). Since the first word’s probability is more accurately estimated, the non-random vari-
ance in the conditional probability measure may be due more to variability in the numerator than in
the denominator, leading the model to attribute some of the variance actually due to conditional prob-
ability to word frequency instead. We would then expect the word frequency interaction with following
context to show the opposite pattern of what is expected for conditional probability (higher word fre-
quency⇒ less following context effect)—which is exactly what we observe (Figure 5, bottom). (Indeed,
Jurafsky et al., 2001 similarly attribute the lack of a conditional probability effect to it being possibly
masked by word frequency.) In sum, the modulating effect we observe of the word frequency of the
first word might actually be partially due to an underlying effect of the conditional probability of the
second word given the first word. As discussed above, there is also a plausible explanation based on
production planning for the observed directionality of word frequency’s modulating effect, without
reference to conditional probability. Thus, the observed word frequency effect is compatible with either
pattern.

Another limitation of our data set is that syntax is not annotated. This means that our measure of
conditional probability serves double duty: It works as a proxy measure for being part of the same
constituent, and at the same time it serves as a proxy measure of how likely the second word given
the first once we hold syntactic constituency constant. To some extent, our bigram random effect as
well as pause duration will control for this—given the correlation of pause duration with syntactic
constituency—but this correlation is far from perfect (Watson and Gibson, 2004). A more richly an-
notated corpus would allow us to test more sophisticated hypotheses and might lead to much clearer
results. We leave disentangling the modulating effects of word frequency, conditional probability, and
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syntactic constituency to future work.

5.3 Production planning as an explanatory factor

The high-level goals of this study were a better understanding of the relationship between prosodic
boundaries and segmental variability, and what factors determine whether particular processes are
variable and the structure of this variability. We examined whether reference to production planning
could address these issues, with respect to coronal stop deletion. To what extent have we found evi-
dence for production planning as an explanatory factor, and what are the broader implications?

One effect we observed, showing how following context is modulated by pause duration, was ex-
actly as predicted if production planning constrains whether following material can affect the applica-
tion of CSD. However, this modulating effect of pauses and the lower rate of deletion at pauses can also
be accounted for based on Articulatory Phonology (AP): Greater temporal compression tends to lead to
greater gestural overlap and more gestural undershoot—both of which can lead the perception of CSD
even if a coronal closing gesture is still present, as discussed. The lengthening or articulatory slow-
down associated with pauses will mean that gestures can be realized to their full magnitude, making it
less likely that a [t] or [d] will be incompletely articulated and perceived as deleted. The PPH therefore
makes overlapping predictions with AP for these effects.

However, our data provides good support for a role of planning locality in explaining CSD pat-
terns. First of all, some proportion of CSD might involve complete deletion of /t/ rather than mere
coarticulation with a following word. Several studies have found that in assimilatory sandhi processes,
both categorical and gradient effects may be at play (Barry, 1985, 1992; Nolan et al., 1996; Kochetov and
Pouplier, 2008; Niebuhr et al., 2011), suggesting that the variability of sandhi rules may not entirely due
to gradient gestural overlap or lessened gestural magnitude (see also Bermúdez-Otero, 2010, for dis-
cussion). Moreover, there is good evidence that gestural overlap itself is often planned, rather than just
be a surface result of temporal compression of gestures. For example, Whalen (1990) conducted exper-
iments in which part of what a speaker needed to say was variably only revealed when a speaker had
already initiated speaking or was known to the speaker at an earlier point. Speakers failed to show ges-
tural overlap to the same degree when they did not have the opportunity to plan coarticulation ahead
of time. The results suggest that in fact coarticulation is largely planned, and not an automatic result
of temporal compression. So even if most instances of apparent CSD deletion in fact do not involve
full deletion, as Purse and Turk (2016) recently reported based on a corpus study, this does not mean
that the PPH does not play any role in accounting for the data: Whether or not upcoming phonological
material is available at the time of planning might be just as important in planning gestural overlap as
it is in making categorical decisions such as deleting a coronal gesture altogether.

Coordinating speech gestures should be impossible if the precise gestures of the following word are
not available yet at the time of planning. We should then be able to see the effect of production plan-
ning factors when holding the prosodic and temporal factors constant. In our model, we aimed to control for
this by including relevant predictors such as speech rate and proxy measures for prosodic boundary
strength in our model. The results suggest that the observed CSD patterns canot be explained as an au-
tomatic result of temporal compression. As expected under the PPH, we found that word frequency of
the present word and the conditional probability of the upcoming word modulate the effect of follow-
ing phonological context, after controlling for prosodic boundary strength. We also tested for effects of
speech rate, which did not clearly pattern as predicted if the source of these effects were in production
planning. While this must lend a cautionary note to our other findings, it is important to note that
even if the PPH is right, the locality of production planning is only one of many factors affecting the
structure of variability in a particular case of segmental realization. This would be the case especially in
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spontaneous speech, such as the data considered here, suggesting that further work in more controlled
speech could better test the PPH. The PPH can also be teased apart better from alternative explanations
by looking at processes that, given their phonetic substance, cannot possibly be explicable in terms of
coarticulation. For a recent example, see Kilbourn-Ceron (2016), who explores the predictions of the
PPH looking at liaison in French–a process where segments (and gestures) are inserted rather than
deleted depending on the phonological shape of an upcoming word.20

If the PPH is right, it makes interesting predictions and suggests ways that work in phonology
and sociolinguistics can draw on the rich production planning literature to inform investigations of
segmental variability (cf. Wagner, 2012). From the perspective of phonology, the PPH predicts that any
phonological process that is conditioned by information across a word boundary must be variable in
nature, and modulated by prosodic boundary strength. From the perspective of sociolinguistic and
phonetic studies of variable segmental realization, the PPH predicts that for any conditioning factor
(such as following phonological context) involving information that is less likely to be available (in the
planning sense) when another conditioning factor (such as boundary strength) is increased, the second
factor should negatively modulate the strength of the first one. While these predictions are likely too
strong, we believe they suggest interesting possibilities for future work.

6 Conclusion

This paper is a first step towards understanding the relative role of production planning and other
factors in explaining segmental variability. It fits into the broader goal of recent work of explaining
the sources of variation in spontaneous speech by reference to cognitive factors about which much is
independently known—such as priming, memory, how speakers use pauses, and speech perception
(e.g. Kendall, 2013; Labov, 2010; Tamminga, 2014)—building on the rich literatures charting the extent
of this variation as a function of linguistic, extralinguistic, and social factors.
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Notes
1Whether the relevant notion of ‘word’ in the definition of what counts as a sandhi process constitutes prosodic words or

morphological words varies between authors, and it will not play a role in this article.
2A similar effect was found for word-medial t/d deletion (Raymond et al., 2006).
3Coetzee and Kawahara (2013, Figure 3) shows empirical plots of the effect of frequency for different following contexts

(consonants, vowels, pauses) which suggest a slight difference in the slope of the frequency effect by following context. However,
whether the frequency effect differs by following context is not explicitly evaluated (i.e. statistically) or discussed. Coetzee (2009)
reports that native speaker intuitions about CSD rate in different phonological contexts were not affected by word frequency.

4In fact, some argue that it can be as big as a phrase, or even an entire transitive sentence (e.g. Oppermann et al., 2010).
5Note that accounts of CSD in terms of gestural overlap do predict such an interaction, since the slow down associated with

stronger boundaries should lead to more time to fully realize the gestures associated with coronal stops.
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6A third important factor is codability, that is the number of potential labels of a picture (Lachman et al., 1974; Snodgrass and
Vanderwart, 1980).

7Since the forced aligner uses a pronunciation dictionary based on reference pronunciations, ‘number of syllables’ means
number of underlying syllables rather than the number of syllables actually realized.

8Note that although we will discuss empirical trends in probability space, all the same qualitative observations we make based
on Figures 1–2 also hold in log-odds space (which is more relevant for the logistic regression models used below).

9We write predictor names in SMALL CAPS, and level names in teletype.
10Note that the cluster of points around “<0.01” in Figure 1 corresponds almost completely to data points followed by no pause:

only 11 points have Pause duration annotated as between 1 and 10 msec, compared to 9844 with pause duration annotated as 0
msec. The appearance of variability in pause duration is due to the points being “jittered” to give a sense of the data’s distribution.

11Note that the ‘no pause’ cutoff here is set to 0 msec, rather than 30 msec, despite the 30 msec cutoff in pause annotation
described above. This is because a small number of hand-corrected pauses were given values below 30 msec by annotators.

12Splines were computed using rcs in the rms package (Harrell, 2014) applied to principal components. The number of knots
was chosen by examining exploratory plots, as in Figure 2 (left).

13Although it appears in Figure 2 (right) that the frequency/deletion rate slope becomes markedly steeper around FREQUENCY

= 4.0, this is not the case in log-odds space, where lines of best fit are within the confidence intervals for the nonlinear smooths.
Note also that the preponderance of words with empirical deletion rates near 0% and 100% for lower word frequencies in this
figure is expected, given that most word types in the corpus (70%) occur 5 or fewer times, at frequencies for which categorical
deletion or non-deletion would be likely observed by chance, assuming for example an overall deletion rate of 19.5% (the rate
implied by the intercept of the statistical model).

14The empirical plot in Fig. 3 suggests the possibility of a nonlinear effect; we found that adding a nonlinear term for conditional
probability did not significantly improve model likelihood, so we code conditional probability as linear.

15Helmert contrasts were used because they are orthogonal, which minimizes multicollinearity, and are ‘centered’ in the sense
that the intercept is the mean of factor levels, which facilitates interpretation of the main effect coefficients for predictors which
interact with FOLLOWING CONTEXT and PRECEDING CONTEXT.

16Following a reviewer’s suggestion, we attempted to fit a model including interaction terms between ANNOTATOR and each
predictor of interest, to evaluate whether our results depend on annotator identity. This model did not converge, presumably
due to the many sparse or zero-count cells once the data is divided up by annotator. Empirical plots split up by annotator
corresponding to Figs. 1–3 did not suggest any qualitative difference between annotators in the effects of interest for our research
questions.

17However, for sufficiently long pauses or at e.g. turn ends, ‘pause’ should still be coded as a following context.
18Though not always, e.g. Zimmerer et al. (2014).
19A reviewer suggests an alternative interpretation: Since more frequent words are less likely to be realized with the final

[t,d] in general, the question which segment follows may become less and less relevant with an increase in frequency. However,
it’s not clear that this would be sufficient to explain the interaction between frequency and following environment—which is
predicted by the PPH.

20Production planning has been shown to be constrained by syntax and semantics, in that production windows tend to be
syntactic constituents (cf. Wheeldon, 2012). If true, we might see gestural overlap be constrained by syntactic structure in ways
that again are not entirely reducible to the prosodic modulation of gestures. Since our corpus is not syntactically annotated, we
cannot test this prediction.
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Table 2: Summary of all random-effect terms included in the statistical model of coronal stop realiza-
tion: variances and corresponding standard deviations.

Predictor Variance Standard Deviation

Speaker
Intercept 0.150 0.387
Following Context 1 0.019 0.137
Following Context 2 0.000 0.000
Pause Class (linear) 0.021 0.145
Pause Class (quadratic) 0.048 0.218
Pause Class (cubic) 0.000 0.000
Preceding Context 1 0.047 0.216
Preceding Context 2 0.010 0.101
Word Frequency (log) 0.043 0.206
Conditional probability (log) 0.008 0.092
Speaking Rate Deviation 1 0.006 0.075
Speaking Rate Deviation 2 0.085 0.291
Pause Class (linear) : Following Context 1 0.131 0.361
Pause Class (linear) : Following Context 2 0.031 0.175
Pause Class (quadratic) : Following Context 1 0.113 0.336
Pause Class (quadratic) : Following Context 2 0.004 0.064
Pause Class (cubic) : Following Context 1 0.183 0.428
Pause Class (cubic) : Following Context 2 0.000 0.000
Pause Class (linear) : Preceding Context 1 0.047 0.216
Pause Class (linear) : Preceding Context 2 0.000 0.000
Pause Class (quadratic) : Preceding Context 1 0.015 0.121
Pause Class (quadratic) : Preceding Context 2 0.000 0.000
Pause Class (cubic) : Preceding Context 1 0.051 0.225
Class (cubic) : Preceding Context 2 0.104 0.322
Word Frequency : Following Context 1 0.000 0.000
Word Frequency : Following Context 2 0.000 0.000
Following Context 1 : Speaking Rate Deviation 1 0.005 0.071
Following Context 2 : Speaking Rate Deviation 1 0.000 0.000
Following Context 1 : Speaking Rate Deviation 2 0.000 0.000
Following Context 2 : Speaking Rate Deviation 2 0.007 0.083
Following Context 1 : Conditional probability (log) 0.182 0.427
Following Context 2 : Conditional probability (log) 0.101 0.318
Word
Intercept 0.361 0.601
Pause Class (line) 0.000 0.000
Pause Class (quadratic) 0.233 0.483
Pause Class (cubic) 0.057 0.239
Bigram
Intercept 0.775 0.881

Table 3: Results of likelihood ratio tests for sets of terms in the logistic regression model related to
research questions. The row for each variable reports the χ2 test (with degrees of freedom in paren-
theses) and significance for comparing models with and without all fixed- and random-effect terms
corresponding to the variable.

Variable χ2 (df) Pr(> χ2)

Pause Class 147.5 (9) <0.0001
Pause Class : Preceding Context 21.0 (12) 0.051
Pause Class : Following Context 103.1 (12) <0.0001
Conditional Probability : Following Context 12.7 (4) 0.012
Word Frequency : Following Context 15.9 (4) 0.0032
Speaking Rate Deviation : Following Context 24.9 (8) 0.0016
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