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ABSTRACT

The sounds of a language spoken by an individual, or shared by a speech community,

can be seen as both remarkably stable and subject to great change. For example, one’s

accent intuitively seems very stable over adulthood, especially in comparison to one’s

constantly changing vocabulary; however, many people report that their accents shifted

after moving from one city to another, or due to social pressure. This thesis addresses

two questions about stability and change in sound systems, or phonetic and phonological

dynamics: what are the dynamics of sound systems in individuals during adulthood, and

what causes underly them?

Previous work has addressed these questions on two timescales. Short-term studies

examine shifts in (phonetic and phonological) variables under exposure to the speech of

others, for example over the course of a conversation. Long-term studies examine shifts

in variables between time points separated by years. Short-term shifts are fairly robust,

with most speakers showing some shift for most variables. Long-term shifts are extremely

irregular, with huge variation in the amount of shift among speakers and variables. What

is the relationship between the different patterns seen in short-term and long-term dy-

namics? And more generally, what do the dynamics of sound systems look like at any

time scale in between?

The bulk of the thesis is a “medium-term” case study addressing these questions, us-

ing a setting where day-by-day phonetics and phonological dynamics can be observed

within individuals: the reality television show Big Brother UK, where speakers live in

an isolated house for three months, and are continuously recorded. We consider five

variables in six hours of speech from one season of the show: voice onset time, coronal

stop deletion, and formant frequencies for three vowels. We build mixed-effect regres-

sion models of day-to-day time dependence for each variable, for each of 12 speakers,

controlling for linguistic factors. Variability is the norm: speakers and variables show

qualitatively different types of time dependence, with a significant minority showing sta-
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bility. There is some evidence that particular speakers (across variables) and particular

variables (across speakers) show characteristic types of time dependence, and that some

time dependence is due to style shifting. Long-term time trends do sometimes occur,

which could be due to accumulation of short-term shifts. Day-by-day variation is com-

mon, but far from universal. These results suggest a tentative account of the relationship

between short-term and long-term dynamics, and directions for future work.

The thesis also addresses two topics closely related to phonetic and phonological dy-

namics: synchronic variation, and automatic phonetic measurement. For each variable,

we build a model of synchronic variation as a preliminary step to modeling the variable’s

dynamics within speakers; the models for voice onset time and coronal stop deletion turn

out to yield interesting and surprising findings with respect to previous work. Many

questions of interest about phonetic and phonological dynamics require radically scaling

up from the hand-labeled datasets used in most previous work, making automatic mea-

surement methods crucial. Our main methodological contribution is a discriminative,

large-margin algorithm for automatic VOT measurement, treated as a case of predicting

structured output from speech. The algorithm is tested on data from four corpora rep-

resenting different types of speech. It achieves performance near human intertranscriber

reliability, and compares favorably with previous work.
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CHAPTER 1

INTRODUCTION

The sounds of a language spoken by an individual, or shared by a speech community,

can be seen as both remarkably stable and subject to great change. The vowels of English

have been constantly changing since the Middle Ages, and vary between dialects, yet the

consonants of English have remained largely the same for several centuries. At the level

of an individual, one’s accent intuitively seems very stable over adulthood, especially

in comparison to one’s constantly changing vocabulary; however, many people report

that their accents shifted after moving from one city to another, or due to social pressure,

or for no obvious reason. These are all cases of stability and change in sound systems, or

phonetic and phonological dynamics. At a high level, this thesis addresses two questions:

what are the dynamics of sound systems, and what causes underlie them?

These questions are closely linked to the study of synchronic phonetic and phonolog-

ical variation. There is tremendous variation in how sounds are realized at a given time,

as a function of static factors: linguistic context, social factors, processing factors, speaking

style, and so on. Phonetic and phonological dynamics constitute variation as a function

of time, or longitudinal variation. However, any pattern of variation observed over time is

a function of both time and static factors. To determine the underlying time dependence,

the effects of static factors must be determined, and controlled for. The entanglement of

time and static factors is especially acute in corpus data, where many static factors vary

at once. There is also a more fundamental connection between synchronic variation and

dynamics: all linguistic change begins in patterns of synchronic variation (though not not

all synchronic patterns lead to change). Thus, understanding the causes of an observed

pattern of longitudinal variation, entails understanding its connection to corresponding

patterns of synchronic variation.

The questions which can be asked about phonetic and phonological dynamics, par-

ticularly in corpora, fundamentally depend on the methods used for measurement and
1



statistical analysis. Large datasets are already needed in corpus studies of synchronic

variation, to deal with the simultaneous presence of many factors; much larger datasets

are needed to search for time dependence, because the system must be characterized at

multiple points in time. The resulting datasets are both large and complex. To scale up to

the amount of data needed, automatic measurement methods are crucial. Simultaneously

characterizing the effects of time and static factors requires powerful statistical methods.

1.1 Summary

The bulk of this thesis is a case study of phonetic and phonological dynamics in individ-

uals over three months. The setting is a ‘natural experiment’: the reality television show

Big Brother, where individuals live in an isolated house and are continuously recorded.

The show provides an excellent setting for studying the dynamics of sound systems and

their sources.

This thesis consists of three conceptual pieces, corresponding to the division above:

methodology, synchronic variation, and longitudinal variation. The pieces overlap some-

what, for ease of presentation. The first gives background on statistical methods, and

presents a new algorithm for automatic phonetic measurement. The second and third ex-

amine synchronic variation and longitudinal variation in a corpus of spontaneous speech

from the house, in five variables: voice onset time (VOT), coronal stop deletion (CSD),

and formant frequencies for three vowels.

1.1.1 Methodology

Chapter 2 provides background on statistical methods used in this thesis, in particular

mixed-effects regression models. Mixed models generalize classical regression for the

case of data with an underlying grouping structure. When modeling phonetic variation,

accounting for the grouping structure of the data (e.g., by word, speaker, or both) is crucial
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for accurately determining both time dependence and the effects of static predictors.

Chapter 3 presents our main methodological contribution: a machine learning algo-

rithm for automatic VOT measurement, treated as a case of predicting structured output

from speech. Manually-labeled data is used to train a function that takes as input a speech

segment of an arbitrary length containing a voiceless stop, and outputs its VOT. The func-

tion is explicitly trained to minimize the difference between predicted and manually-

measured VOT; it operates on a set of acoustic feature functions designed based on spec-

tral and temporal cues used by human annotators. The algorithm is applied to initial

voiceless stops from four corpora, representing different types of speech. Using several

evaluation methods, the algorithm’s performance is near human intertranscriber reliabil-

ity, and compares favorably with previous work. Furthermore, the algorithm’s perfor-

mance is minimally affected by training and testing on different corpora, and remains

essentially constant as the amount of training data is reduced to 50–250 manually-labeled

examples, demonstrating the method’s practical applicability to new datasets.

Variation in VOT and vowel formants in the Big Brother corpus are primarily studied

using automatic measurements. Automatic formant measurements are made following

forced alignment of each sound file to a sequence of phonemes corresponding to its or-

thographic transcription; both steps use modified versions of existing software.

1.1.2 Synchronic variation

Chapters 4 and 5 contain preliminaries to modeling phonetic variation in Big Brother.

Chapter 4 reviews relevant areas of previous work:

• Previous linguistic studies using reality TV data have mostly studied pragmatic or dis-

course phenomena related to the performative aspect of reality television. Our

study adds to a smaller strand where a show is used as a natural experiment, to

address questions well-aligned with the show’s structure.
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• Phonetic and phonological variation in spontaneous speech has been studied in two largely

distinct literatures, depending on whether the primary interest is in phonetics and

phonological phenomena, or variation and change in speech communities.1 Our

study falls into both categories.

• Longitudinal phonetic and phonological variation during adulthood is discussed below.

• Factors conditioning variation in each of the five variables have been extensively stud-

ied in the phonetics and sociolinguistics literatures.

Chapter 5 describes the structure of the show, our corpus of spontaneous speech from the

show, and datasets of phonetic measurements for each of the five variables.

Chapter 6 presents models of synchronic variation in each variable, as a function of

static factors related to the host word, the speaker, surrounding segments, or speaking

style. We also model arbitrary differences between speakers and words, beyond the ef-

fects of static factors. As described above, a first motivation for building these static models

is as a preliminary step to building dynamic models of longitudinal variation, to determine

how to control for static factors.

A second motivation is that the static models are interesting in their own right. The

models for voice onset time and coronal stop deletion in particular yield novel and sur-

prising findings with respect to previous work. Both have largely been studied in North

American varieties of English, while our dataset contains an unusual mix of accents,

largely from non-standard British dialects. VOT has been examined almost exclusively

in laboratory studies of planned speech, where the effects of a small set of factors are

precisely determined, with all others held constant. By examining VOT in a spontaneous

speech corpus, we are able to determine the relative importance of different conditioning

factors detailed by laboratory studies, and how much these factors vary by speaker. CSD

has usually been studied in spontaneous speech, but for speakers from a single speech

1. Of course, these categories are not mutually exclusive.
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community. Our unusual dataset compels us to build more complex models than used in

previous studies, allowing both base deletion rate and the effects of conditioning factors

to vary between speakers. The models make interesting predictions for several condition-

ing factors, and our results raise a number of methodological points with relevance for

the interpretation of previous work on CSD, and for the design of future studies of CSD.

1.1.3 Longitudinal variation

The heart of this thesis is Sec. 4.3 and Chapter 7, which address the two questions raised

at the outset about longitudinal variation, specifically within adults (as are all speakers in

the Big Brother house). To situate this study with respect to previous work, it is conve-

nient to rephrase these two questions as three more specific questions:

1. What time dependence do different phonetic and phonological variables show within

individual speakers?

2. How and why do individuals differ in the dynamics of particular variables?

3. How and why do variables differ in their dynamics within individuals?

Sec. 4.3 reviews previous work addressing these questions, which can be divided into

two categories corresponding to different timescales. Short-term studies examine shifts

in phonetic and phonological variables in one’s speech under exposure to the speech of

others, over the course of a conversation or a laboratory experiment. An important mo-

tivation for many short-term studies is the hypothesis that sound change, both in indi-

viduals and in communities, results in part from an accumulation of the short-term shifts

which occur in interaction. This account rests on the persistence hypothesis, that such shifts

can and do accumulate within individuals. Long-term studies examine shifts in phonetic

and phonological variables between several time points separated by years (potentially

many), for individuals who either remain in the same speech community or move be-

tween dialect regions. The interpretation of long-term studies rests on the stationarity
5



hypothesis, that individuals do not fluctuate much in their baseline use of a variable from

day to day, so any change observed after controlling for conditioning factors is meaning-

ful. However, very little previous work tests either hypothesis, and it is not currently

known under what conditions either one holds.

Short-term shifts are fairly robust: for most phonetic and phonological variables, most

speakers show some shift. Long-term shifts are extremely irregular: there is huge varia-

tion in the amount of shift shown by different individuals for different variables. In many

cases a majority show stability, with a minority showing significant change. Yet given the

robustness of short-term shifts, if the hypothesis that such shifts accumulate holds, long-

term shifts should be the norm. How can the patterns seen in short-term and long-term

change be reconciled, and where does the disconnect lie?

Big Brother offers a case of medium-term change, where the dynamics of phonetic and

phonological variables can be observed within individuals over three months, and used

both to test the persistence and stationarity hypotheses, and to address the mismatch be-

tween short-term and long-term change. Chapter 7 models day-to-day time trajectories

for our five variables for 12 speakers. For each speaker/variable pair, a best dynamic model

of time dependence, controlling for static factors, is determined. We find that variability

is the norm: speakers and variables show four qualitatively different types of time de-

pendence, with a significant minority showing stability. Thus, the dynamics look more

like long-term change than short-term change. There is some evidence that particular

speakers (across variables) and particular variables (across speakers) show characteristic

types of time dependence. These results support weaker forms of the persistence and

stationarity hypotheses: long-term time trends do sometimes occur, which could be due

to accumulation of short-term shifts. Day-by-day variation is common, but far from uni-

versal. We give a tentative account of the relationship between short-term and long-term

dynamics in individuals, which addresses the apparent mismatch between them, and

suggests directions for future work.
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1.2 Terminology: Phonetics and phonology

This thesis examines variation in sound systems, by which we mean both phonetics and

phonology, for either an idiolect or a variety spoken in a speech community. Traditionally,

the domain of phonology is the organization of sounds at an abstract level (phonemes) in

a language, and the domain of phonetics is the physical realization of sounds (phones).

However, the boundary between the two has become very murky. Though most scholars

would still acknowledge that a distinction exists (some phenomena belong squarely in

phonetics or phonology), “the field has reached no consensus about what the [phonetics-

phonology] interface is, nor is it even agreed that one exists at all” (Kingston, 2007: 401).2

The lack of consensus is particularly acute for variation, especially across the multi-

ple subfields addressed by this thesis (phonetics, sociolinguistics, phonology). “Phonetic

variation” traditionally encompassed variability in the surface realization of a phoneme,

but much “phonological variation” studied in sociolinguistics since the 1960s falls into

this category. “Phonological variation” has been increasingly studied by phonologists as

well (Coetzee and Pater, 2011), but there is no consensus on what the term encompasses,

e.g. only categorical differences or gradient subphonemic variation as well.3

Fortunately, the distinction between phonetics and phonology is largely irrelevant for

the studies in this thesis. Unfortunately, there is no established term for ‘phonetic and/or

phonological’, and this adjective is awkward to use throughout. Rather than invent a new

one, we will tend to use ‘phonetic’ (i.e., ‘phonetic variable’, ‘phonetic variation’), simply

because we will mostly investigate variation in each of our five variables in isolation, and

not as part of a system of units. Thus, traditionally phonological notions such as con-

trast and alternations do not come into play, while many traditionally phonetic notions

2. The second clause encompasses two extreme positions: that there is total overlap between phonetics
and phonology (Ohala, 1990), or no overlap at all (Hale and Reiss, 2000).

3. Coetzee and Pater’s review in fact defines it as “a situation in which a single morpheme can be real-
ized in more than one phonetic form in a given environment” (401), which would subsume any definition
of phonetic variation.

7



do. However, this shorthand should not be taken to imply any assumptions about the ex-

tent to which any of our variables are phonetic or phonological in any meaningful sense.

When discussing variation in sound systems more generally, or making points based on

our variables with broader implications for such variation, we will tend to use ‘phonetic

and phonological’.
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CHAPTER 2

STATISTICAL BACKGROUND

This chapter briefly introduces statistical methods used in this thesis, with particular at-

tention to mixed-effects regression models, which we will use extensively.1

2.1 Preliminaries

Linear regression In classical linear regression, we are given n observations. The ith ob-

servation consists of a real-valued response, yi, and values for p predictors, (x0
i , x

1
i , . . . , x

p−1
i ).

It is typically assumed that the first predictor, the intercept, is always 1 (x0
i = 1). The model

matrix X is the n × p matrix whose (i, j + 1) entry is xji . The response is modeled as a

linear function of the predictors, plus an error term:

yi = β0 + β1x1
i + · · ·+ βp−1x

p−1
i + εi, i = 1, . . . , n (2.1)

where β = (β0, β1, . . . , βp−1) is the p× 1 vector of regression coefficients, and the εi are i.i.d.

drawn from N(0, σ2). An estimate of β, denoted β̂, is determined, often using ordinary

least squares. The resulting fitted values are ŷ = Xβ̂, and the residuals are ε̂ = y − ŷ.

Logistic regression In classical logistic regression, a categorical response is modeled as

a function of a set of predictors. Following common practice, we use “logistic regression”

as shorthand for “binomial logistic regression”, where the response is binary. For each

observation, the response yi ∈ {0, 1} is assumed to follow a Bernoulli distribution whose

expectation is an unseen parameter, pi. A function of pi, the link function, is assumed to be

1. For more comprehensive treatments, see e.g., Gelman and Hill (2007); Maindonald and Braun (2007)
for statistical methods and Gelman and Hill (2007); Snijders and Bosker (2011) for mixed-effects models.
From the perspective of analyzing linguistic data, see e.g., Baayen (2008); Johnson (2011); Levy (2012).
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a linear function of the predictors. A common choice for binomial data is the logistic link:

ln

(
pi

1− pi

)
= β0 + β1x1

i + · · ·+ βp−1x
p−1
i , i = 1, . . . , n (2.2)

Note that there is no error term, in contrast to Eq. (2.1). The left-hand side is often written

logit (pi), or called the log-odds of pi. The logit function has range (−∞,∞).

As for linear regression, an estimate β̂ of β is determined. Given β̂ and a vector x of

predictor values, β̂ · x is the predicted log-odds that the response is 1. Thus, the model’s

prediction (which can be any real number) is not directly comparable to the response

(which is 0 or 1), unlike in linear regression.

Types of variables Following Gelman and Hill (2007: 37), we distinguish between in-

puts and predictors. Inputs, or input variables, are “information on the units that go into

the predictors”, which we denote using using SMALL CAPS. Predictors are functions of

the inputs, which make up the columns of the model matrix.

For example, suppose VOT for word-initial voiceless stops is modeled as a function

of three inputs: speaking rate (RATE), word frequency (FREQUENCY), and the stop’s place

of articulation (POA). RATE and FREQUENCY are continuous variables, while POA is a

categorical input, or factor, which can take on a number of possible values, called levels.

We denote factor levels in teletype. (POA has 3 levels: bilabial, alveolar, velar.)

To include a factor x with k levels in a regression model, it is coded as k − 1 numer-

ical predictors, or contrasts.2 The number of contrasts is k − 1 because the intercept is a

predictor as well, so which of the k levels of x a observation takes on is determined by

k predictors. Thus, a factor with k levels corresponds to k − 1 degrees of freedom. The

choice of a contrast coding scheme defines the interpretations of the k − 1 predictors, in

terms of the value which the response takes on for different factor levels.

2. For more on contrast coding, see e.g., Cohen et al. (2003: Ch. 8–9); Venables and Ripley (2002: Sec.
6.2).
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Two types of contrast coding are used in this thesis. In dummy coding, one level is

chosen as the base, and the contrasts represent the difference between each other level and

the base. For example, if bilabial is chosen as the base for the dummy-coded contrasts

for POA, the interpretation of the two contrasts is “difference between alveolar and

bilabial” and “difference between velar and bilabial.” In Helmert coding, given

an ordering of the factor’s levels, each contrast represents the difference between a level

and the mean of all previous levels. For POA, the interpretation of the two contrasts is

“difference between alveolar and bilabial” and “difference between velar and the

mean of bilabial and alveolar.” Importantly, different choices of contrast for a factor

included in a regression are simply reparametrizations of the same statistical model. The

interpretation of the regression coefficients for the contrasts and the intercept change, but

the predictions of the model do not.

Interactions It is often of interest to model the effect of one input on the response as

conditional on the value of another input. For example, the effect of speaking rate on

VOT might depend on the stop’s place of articulation. This is accomplished by adding

predictors for the interaction of the two inputs. When predictions for interactions are

included in a regression, the non-interaction predictors are called main effects. For two

continuous inputs, the interaction is simply the product of the two main effects, called a

two-way interaction; for three continuous inputs, it is the product of the three main effects

(three-way interaction), etc. More generally, for two inputs corresponding to k and j main

effects (i.e., number of degrees of freedom), their interaction corresponds to kj predictors.

To give a concrete example, consider a classical linear regression model of VOT as a

function of RATE, POA (dummy-coded, as described above), and their interaction, for n

words. yi is the VOT of word i, and there are six predictors (Table 2.1).
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Table 2.1: Predictors for RATE, POA, and their interaction for observation i.

Predictor Interpretation Note

x0
i 1 (the intercept)
x1
i Speaking rate for word i

x2
i POA contrast 1 1 if POA=alveolar, 0 otherwise
x3
i POA contrast 2 1 if POA=tttvelar, 0 otherwise
x4
i x1

i · x2
i

x5
i x1

i · x3
i

2.2 Mixed-effects regression

Mixed-effects regression models, or mixed models (also known as hierarchical, or multi-

level models), are a generalization of classical regression to the case where observations

have an underlying grouping structure, possibly hierarchical. For example, for most mod-

els in this thesis, each observation represents a phonetic variable measured for a word

spoken by a particular speaker, so each point is grouped by WORD and SPEAKER. These

are grouping levels, which consist of a set of units (i.e., individual speakers). Intuitively,

each observation’s response is modeled both as a function of properties of the observa-

tion, and of properties of the group units it belongs to.

Mixed-effects models contain two types of coefficients: fixed effects do not vary be-

tween the units in a group, while random effects do. Fixed-effect coefficients are analogous

to the elements of the coefficient vector β in classical regression; they measure the mean

effect of each predictor across units in a grouping level. Random-effect coefficients are

assumed to be drawn from a probability distribution; they measure how much each unit

deviates in the effect of some predictor from the overall mean.

2.2.1 Models

A general treatment of mixed-effects models, even simple ones, would require introduc-

ing an overabundance of notation for our purposes. Instead, we will give examples of the
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types of models used in this thesis, introducing terminology as we go.

2.2.1.1 Linear mixed-effects models: Single grouping level

Suppose we model n observations of VOT from word-initial stops in K words spoken by

J speakers, as a function of three inputs: speaking rate (RATE), speaker gender (GENDER),

and word frequency (FREQUENCY). Let yi be the response and s[i] and w[i] denote the

word and speaker of the ith observation. Let x1
i be the RATE for observation i, x2

s[i]

the GENDER of speaker s[i] (dummy-coded: 1/0 for females/males), and x3
w[i]

the FRE-

QUENCY of word w[i]. Finally, let RATE and FREQUENCY be centered, so a value of 0 for x1
i

means a word of average frequency spoken at an average rate. RATE is an observation-level

input: an observed quantity which differs (potentially) between observations. Similarly,

GENDER is a speaker-level input and FREQUENCY is a word-level input.

Model 1: Random intercept only In a first model, we ignore that observations are

grouped by word. We assume that VOT varies as a function of RATE and FREQUENCY

in the same way across all speakers, and as a function of GENDER in the same way across

all words. In addition, we assume each speaker’s characteristic VOT differs from the

mean by an offset, bs[i]. Each observation’s VOT is modeled as:

yi = β0 + β1x1
i + β2x2

s[i] + β3x3
w[i] + bs[i] + εi, i = 1, . . . , N

bj ∼ N(0, σ2
0), j = 1, . . . , J

εi ∼ N(0, σ2), i = 1, . . . , N

The coefficients β1, β2, and β3 are fixed effects. They describe the slopes for speaking rate

(how much VOT increases for an increase of 1 unit), word frequency (similar), and gender

(the difference in VOT between male and female speakers).

The coefficients b1, . . . , bJ are random effects, specifically random intercepts, in this case
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“by-speaker random intercepts.” They quantify how much each speaker’s VOT differs

from the group-level mean, β0. Thus, for a word of average frequency spoken at an av-

erage speaking rate, the VOT for male speaker j is β0 + bj . It is assumed that speakers’

offsets are normally distributed. There is also an observation-level error term, also as-

sumed to be normally distributed.

Assuming the speakers whose data were modeled were representative of a larger pop-

ulation, σ̂0
2 is the model’s prediction of how much speakers in the population vary in

their characteristic VOT values, after accounting for the effect of GENDER. For example,

95% of male speakers in the population are predicted to have VOTs in (β̂0−2σ̂0, β̂
0 +2σ̂0).

Model 2: Random intercept and random slopes, uncorrelated In Model 1, it was as-

sumed that speakers all had the same slope for speaking rate, β1, but had varying in-

tercepts. Now, assume that both the intercept and the slope for speaking rate vary by

speaker, with b0
s[i]

and b1
s[i]

the offsets for speaker s[i]. The model is now:

yi = (β0 + b0s[i]) + (β1 + b1s[i])x
1
i + β2x2

s[i] + β3x3
w[i] + εi, i = 1, . . . , n

b0j ∼ N(0, σ2
0), j = 1, . . . , J

b1j ∼ N(0, σ2
1), j = 1, . . . , J

εi ∼ N(0, σ2), i = 1, . . . , n

This model contains two types of random effects. b01, . . . , b
0
J are by-speaker random inter-

cepts, as in Model 1. Analogously, b11, . . . , b
1
J are by-speaker random slopes, which measure

how much each speaker’s effect of speaking rate on VOT differs from the group-level

mean, β1. The by-speaker random intercepts, by-speaker random slopes, and observation-

level errors are all normally distributed, with different variances. Further, the two by-

speaker random effects are assumed to be uncorrelated across speakers; for example, it is

not the case that speakers with higher VOTs also have larger slopes for speaking rate.
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Model 3: Random intercept and random slopes, correlated It may not be realistic to

assume uncorrelated random effects, for example if a clear correlation between VOT and

the effect of speaking rate is observed across speakers in the empirical data. If the random

slopes and random intercepts are allowed to covary, the model becomes:

yi = (β0 + b0s[i]) + (β1 + b1s[i])x
1
i + β2x

2
s[i] + β3x

3
w[i] + εi, i = 1, . . . , n



b0j

b1j


 ∼ N







0

0


 ,



σ2

0 σ2
01

σ2
01 σ2

1





 , j = 1, . . . J

εi ∼ N(0, σ), i = 1, . . . , n

The two by-speaker random effects are now drawn from a multivariate normal distribu-

tion with mean 0, and a 2 × 2 covariance matrix. Note that both Model 1 and Model

2 are special cases of Model 3, for different assumptions about this covariance matrix:

σ1 = σ01 = 0 gives Model 1, and σ01 = 0 gives Model 2.

Let Σ denote the covariance matrix of the by-speaker random effects. We could also

choose to allow the slope for word frequency to vary by speaker, in which case Σ would be

3× 3. Models 1–3 easily generalize to arbitrary many speaker-level and observation-level

predictors. A by-speaker random slope can be added, or not, for each observation-level

predictor.

2.2.1.2 Linear mixed-effects models: Multiple grouping levels

Most mixed-effects models in this thesis have two or more grouping levels. We give an

example for the case of two levels; the extension to more is straightforward.

Model 4: Two grouping levels, random intercepts only Most mixed models in this

thesis have two grouping-levels: speaker and word. In this setting, there can be both by-

word and by-speaker random effects. Such models, where a unit in one grouping level
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can occur with multiple units in another grouping level, are said to have crossed random

effects (Baayen et al., 2008; Hox, 2010). (For example, many words will be spoken by more

than one speaker.)

Remaining with the VOT example, assume the same setup and notation as Model 1

(fixed effects for RATE, GENDER, FREQUENCY; by-speaker random intercepts), but now

allow by-word random intercepts, ck (k = 1, . . . , K). The model is now:

yi = (β0 + bs[i] + cw[i]) + β1x1
i + β2x2

s[i] + β3x3
w[i] + εi, i = 1, . . . , N

bj ∼ N(0, σ2
0), j = 1, . . . , J

ck ∼ N(0, τ2
0 ), k = 1, . . . , K

εi ∼ N(0, σ2), i = 1, . . . , N

In this model, both words and speakers are assumed to have characteristic VOT values;

their offsets from the mean are normally distributed, with different variances. So for ex-

ample, for a female speaker j and a word k with average frequency spoken at an average

rate, VOT is β0 +β2 +bj+ck. τ̂2
0 and σ̂2

0 are the model’s estimates of how much words and

speakers in the larger population vary in their characteristic VOT values, after accounting

for word-level and speaker-level predictors.

It would be possible to add both by-speaker and by-word random slopes to Model 4,

analogously to Models 2–3. In the current example, we could include a by-word random

slope for GENDER, which would allow the VOT difference between men and women to

vary by word. The models in this thesis do not include by-word random slopes, so no

such examples are given here.

2.2.1.3 Mixed-effects logistic regression

Models 1–4 assume a linear response. As in the classical regression case, it is also possible

to model a binomial response. Again, we now assume that the response yi ∈ {0, 1} is
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drawn from a Bernoulli distribution whose expectation is an unknown parameter, pi.

Assuming a logistic link, logit(pi) is modeled almost exactly as yi was in Models 1–4: as a

linear function of the predictors, with coefficients consisting of fixed-effect terms, random

effect terms, or a mixture of both. However, as in classical logistic regression, there is no

error term (εi).

2.2.2 Model fitting and results

For an arbitrary linear mixed model, let β be the vector of fixed effect coefficients, and

let σ2 be the observation-level variance. Let Ψ be the vector consisting of all the random-

effect variances, concatenated. (For example, for Model 4, Ψ = (σ2
0, τ

2
0 ).) A closed-form

likelihood function can be written for the model in terms of these three parameters. Fit-

ting the model results in parameter estimates β̂, Ψ̂, and σ̂2, and corresponding standard

errors. We fit mixed models using the lme4 package in R (Bates et al., 2011), which

chooses estimates which maximize either log-likelihood, or restricted maximum likeli-

hood (Pinheiro and Bates, 2000: Sec 2.2). For mixed-effects logistic regression, there is

no residual variance, so only estimates of β and Ψ are produced. Because the likelihood

function in this case does not have a closed-form solution, lme4 optimizes a Laplace ap-

proximation to the likelihood (Bates, 2011).

BLUPs Although the random-effect variances Ψ are model parameters, the random ef-

fects themselves are not; they are unobserved parameters. However, it is often of inter-

est to have estimates of the random effects themselves, for example to characterize how

much individual speakers deviate from the norm. Estimates known as best linear unbiased

predictors (BLUPs) are commonly used; these are the conditional modes of the random

effects, conditional on the model parameters, evaluated at their estimated values (β̂, Ψ̂,

σ̂2) (Pinheiro and Bates, 2000: Sec. 2.2)

17



2.2.3 Statistical significance

We assume familiarity with the concepts of hypothesis tests, confidence intervals, and

measures of statistical significance, for example in the context of classical linear regres-

sion. In summarizing models in this thesis, we will give measures of significance of sets

of random-effect terms, individual fixed-effect coefficients, and sets of both random-effect

terms and fixed-effect coefficients. In each case, various measures of significance have

been proposed; we present a few which are both easy to calculate and widely used. In

general, our impression is that there is no consensus yet on the best way to quantify and

report uncertainty for mixed models.

Random effects The significance of a set of k random-effect terms (i.e., corresponding

to k random effect variances) can be assessed by comparing the full model (where the

terms are included) with a subset model (where the terms have been dropped). In the

large-sample limit, twice the log of the ratio of the two models’ likelihoods follows a χ2

distribution with k degrees of freedom. Thus, in a likelihood ratio test, this quantity can be

compared to a χ2(k) distribution to obtain a p-value (Pinheiro and Bates, 2000: Sec. 2.4).

Fixed effects Let β̂ and SE(β̂) be the parameter estimate and standard error for some

fixed-effect coefficient in a mixed model. Under conditions which are usually satisfied in

practice, β̂/SE(β̂) follows a standard normal distribution (Pinheiro and Bates, 2000: Sec.

2.3). Thus, a (two-sided) Wald test can be applied to give a measure of significance.

Another more complex possibility does not rely on large sample size. Assuming some

prior distribution over the model parameters (β, Ψ, and σ̂2), it is possible to define a pos-

terior distribution over these parameters conditional on the data. The mcmcsamp func-

tion in lme4 performs Markov Chain Monte Carlo (MCMC) sampling from this posterior

distribution, assuming locally-flat or locally non-informative priors over all model pa-

rameters. Sampling from the posterior gives N times gives N draws of β̂. One minus the
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percentage of draws which are on the same side of zero as the fixed-effect estimate of β̂

gives an MCMC p-value, which intuitively measures the probability that we are mistaken

about the sign of β̂.

Of these two methods, MCMC p-values better characterize uncertainty in the esti-

mated value of a fixed effect. However, at this writing sampling from the posterior has

only been implemented for linear mixed models with uncorrelated random effects.

The significance of a set of j fixed-effect terms can be assessed by a likelihood ratio

test, similarly to a set of random-effect terms. In the large sample limit, the log of the

likelihood ratio of a model with and without the j terms follows a χ2(j) distribution.

Both fixed and random effects Finally, it is sometimes of interest to assess the signifi-

cance of j fixed-effect terms and k random-effect terms. Let Lk+j , Lk, and L0 be the like-

lihoods of the full model (including both types of terms) Mk+j , the model Mk where the

fixed-effects terms have been dropped, and the modelM0 where both types of terms have

been dropped. The difference in log-likelihood between the full model and the smallest

model is

log(Lk+j)− log(L0) = (log(Lk+j)− log(Lk))︸ ︷︷ ︸
∼χ2(j)

+ (log(Lk)− log(L0)︸ ︷︷ ︸
∼χ2(k)

where the terms on the right-hand side follow χ2 distributions because they correspond

to dropping j fixed-effect terms and k random-effect terms, respectively. The sum of

two independent random variables which follow χ2(k) and χ2(j) distributions follows

a χ2(j + k) distribution. Thus, assuming that the contribution of the fixed-effect and

random-effect terms to the model are independent, the difference in log-likelihood be-

tween M0 and Mk+j can be compared to a χ2(j + k) distribution to obtain a p-value.
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2.2.4 Goodness of fit

It is often of interest to measure the goodness of fit of a statistical model to the data. The

most familiar measure is R2, which applies to (classical) linear regression models. R2 can

be defined in several ways, all of which are equivalent for linear regression. The most

common definition is

R2 = 1−
∑n
i=1(yi − ŷi)∑n
i=1(yi − ȳ)

(2.3)

where ŷi is the model’s prediction for observation i, and ȳ is the mean over the yi. In-

tuitively, the denominator in the fraction is the amount of variability in the data, after

centering (i.e., the amount of variability remaining if the only predictor is the intercept),

and the numerator is the amount of variability in the data which is unaccounted for by

the model. Under this definition R2 is the “fraction of variation explained” by the model.

Another definition uses the relative likelihood of the intercept-only and full models:

R2 = 1− (
L0

LM
)
2
n (2.4)

where L0 and Lm are the likelihoods of these two models (Magee, 1990). Under this

definition, R2 is the amount of improvement of the full model over a baseline model,

measured by their likelihood ratio.

Under either definition, R2 ranges between 0 (no improvement over intercept-only

model) and 1 (perfect fit to the data).

For logistic regression, there is no equivalent of R2: a single quantity which ranges be-

tween 0 and 1, can be interpreted as percentage variance explained or improvement over

a baseline model, and so on. A number of “pseudo-R2” measures have been proposed,

corresponding to different definitions ofR2 in the linear regression case. One widely-used

option (Cox-Snell R2) simply uses Eq. (2.4), since L0 and LM are also defined for logistic

regression. However, the likelihood function for logistic regression models is such that

the maximum value of LM is 1; thus, the Cox-Snell R2 has a maximum value less than 1.
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Nagelkerke (1991) proposed rescalingR2 by its maximum value, so the resulting measure

lies between 0 and 1 (as for linear regression):

R2
ν =

1− (L0/LM )2/n

1− (L0)2/n
(2.5)

which is sometimes called the Nagelkerke pseudo-R2.

Mixed-effects models There is no single analogue of R2 for mixed models. The notion

of “fraction of variance explained” becomes non-trivial, because mixed models contain

several types of variance.3 However, the likelihood ratio-based definition of R2 (“net

improvement from the baseline to the full model”) can still be used, by simply plugging

the intercept-only model and full model likelihoods into Eq. (2.4) for linear mixed models,

and into Eq. (2.5) for mixed-effect logistic regression models (Kramer, 2005). These R2

measures for mixed models serve as intuitive measures of model goodness relative to a

baseline, and range between 0 and 1.

3. For generalizations of R2 to explain the amount of variance explained at different levels of mixed
models, see Snijders and Bosker (2011: Ch. 7); Gelman and Hill (2007: Sec. 21.5).
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CHAPTER 3

AUTOMATIC MEASUREMENT OF VOICE ONSET TIME

3.1 Introduction

Huge corpora of speech, both from laboratory or naturalistic settings, are becoming in-

creasingly available and easy to construct, and promise to change the questions researchers

can ask about human speech production.1 However, this promise depends on the de-

velopment of accurate algorithms to quicken or replace manual measurement, which

becomes infeasible for large corpora. With a few important exceptions (such as pitch

and vowel formants), such algorithms do not currently exist for most quantities that are

widely measured in phonetic research. This chapter describes an automatic measurement

algorithm for perhaps the most widely-measured consonantal variable, voice onset time.

Many stops, particularly in word-initial position, are produced with a burst. In phono-

logically voiced stops (/b/, /d/, /g/), the burst tends to be relatively short and voicing

often begins before the burst. In phonologically voiceless stops (/p/, /t/, /k/), the burst

tends to be relatively long, and voicing tends to begin after the burst. In pioneering work,

Lisker and Abramson (1964, 1967) showed that a single parameter suffices to characterize

much of the difference between voiced and voiceless stops, in perception and production:

the time difference between the onset of the burst and the onset of voicing, which they

termed voice onset time (VOT).2 When voicing begins preceding the burst, VOT is nega-

tive and the stop is called prevoiced, or shows voicing lead (or lead). When voicing begins

following the burst, VOT is positive and the stop shows lag.

VOT is measured in many clinical and non-clinical studies every year, requiring per-

1. This chapter is a lightly-edited version of a submitted manuscript (Sonderegger and Keshet, 2012),
which itself is a greatly expanded version of an earlier proceedings paper (Sonderegger and Keshet, 2010).
Both are joint work with Joseph Keshet.

2. As noted by Braun (1983), the concept of VOT goes back at least to the late 19th century (Adjarian,
1899). However, it was not widely known prior to its independent discovery by Lisker and Abramson.
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haps thousands of transcriber-hours. Because controlling the duration of aspiration re-

quires fine motor control, VOT has been extensively examined in speakers with commu-

nication disorders, both for diagnosis and treatment (Auzou et al., 2000). It is also widely

measured in articulatory phonetics, for example to characterize how languages differ in

the phonetic cues to stop contrasts (Cho and Ladefoged, 1999; Lisker and Abramson,

1964).

There have been a number of previous studies proposing algorithms for automatic

VOT measurement. Previous work has used automatic measurements for speech recog-

nition tasks (Ali, 1999; Niyogi and Ramesh, 1998, 2003; Stouten and van Hamme, 2009),

phonetic measurement (Fowler et al., 2008; Tauberer, 2010), and accented speech detec-

tion (Hansen et al., 2010; Kazemzadeh et al., 2006). Some studies, like the current one,

focus largely on the problem of VOT measurement itself, and evaluate the proposed al-

gorithm by comparing automatic and manual measurements (Hansen et al., 2010; Lin and

Wang, 2011; Stouten and van Hamme, 2009; Yao, 2009a). Our approach differs from all

previous studies except one (Lin and Wang, 2011) in an important aspect. Instead of us-

ing a set of customized rules to estimate VOT, our system learns to estimate VOT from

training data.

To replace manual measurement, we believe that an automatic VOT measurement al-

gorithm should meet three criteria. Both because the burst and voicing onsets are often

highly transient, and because the effects of interest (e.g., VOT difference between two con-

ditions) in studies using VOT measurements are often very small, the algorithm should

have high accuracy by the chosen measure of performance. The cues to the burst and

voicing onset locations vary depending on many factors (speaking style, speaker’s na-

tive language), and different labs have slightly different VOT measurement criteria. To

account for such variation in the mapping between spectral/temporal cues and labeled

VOT boundaries, the algorithm should be trainable: it should learn to measure VOT based

on labeled data, and should perform well on diverse datasets. To meet the goal of replac-
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ing manual measurement, it should also be adaptable to a new dataset with little effort

(i.e., training data).

This study proposes a supervised learning algorithm meeting all three criteria. The

algorithm is trained on a set of manually-labeled examples, each consisting of a speech

segment of an arbitrary length containing a stop consonant, and a label indicating the

burst onset and the voicing onset, which we denote an onset pair. At test time the algo-

rithm receives as input a speech segment containing a stop consonant, and outputs an

onset pair and its corresponding VOT. The goal of the algorithm is to predict VOT as

accurately as possible on unseen data.

Our algorithm belongs to the family of discriminative large-margin learning algo-

rithms. A well-known member of this family is the support vector machine (SVM). The

classical SVM algorithm assumes a simple binary classification task, where each input

is of fixed length. The task of predicting VOT is more complex: the input is a speech

segment of arbitrary length, and the goal is to predict the time between two acoustic

events in the signal. Our algorithm is based on recent advances in kernel machines and

large margin classifiers for structured prediction (Shalev-Shwartz et al., 2004; Taskar et al.,

2003; Tsochantaridis et al., 2004). It maps the speech segment along with the target on-

set pair into a vector space endowed with an inner product. The vector space contains

all possible onset pairs, and during training the algorithm tries to find a linear classifier

that separates the target onset pair, as well as all “nearby” onset pairs (in terms of the

cost function), from all other possible onset pairs in this vector space. At test time, the

algorithm receives unseen speech segments. Each segment is mapped to the same vector

space, and the most probable onset pair (and hence VOT) is predicted.

For this method to work and achieve high accuracy, the feature set must induce a

vector space in which the target onset pair is both distinguishable and separable from

other onset pairs. We achieve this by manually crafting a set of features which are in-

formative about the precise locations of the burst and voicing onsets, and which tend to
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take on higher values for target onset pairs than for other onset pairs. The features lever-

age knowledge about how humans annotate VOT: using a variety of cues based on the

spectrum, the waveform, and the output of speech processing algorithms (such as pitch

trackers). We note that the feature sets typically used in speech recognition (e.g., MFCCs,

PLPs) are not adequate for VOT measurement, since their time resolution is too coarse to

accurately detect highly transient events such as burst onsets.

Another factor that controls the accuracy of the algorithm is the cost function used to

evaluate how good a predicted VOT is, relative to its target value. Discriminative learning

algorithms aim to maximize some measure of performance or minimize some cost func-

tion. The classic SVM, for example, is designed to minimize the zero-one loss function

during training (i.e., the number of incorrect classifications). Our algorithm aims to min-

imize a special cost function, which is low if the predicted VOT is close to the manually-

measured VOT and high otherwise. The function also does not penalize small differences

between predicted and labeled VOT values during training, taking into account the fact

that some measurement inconsistency (within or across annotators) is expected.

We evaluate our algorithm’s accuracy in experiments on four datasets, using several

methods to evaluate the algorithm’s predictions relative to manual measurements. The

datasets range across very different types of speech, testing the algorithm’s applicability

in different settings. To test the algorithm’s adaptability to novel datasets where little or

no labeled data is available, we perform experiments testing the algorithm’s robustness

to reducing the amount of training data, or training and testing on different datasets.

The remainder of the chapter is structured as follows. We first formally describe the

problem of VOT measurement (Sec. 3.2), and describe our algorithm and the feature maps

it takes as input (Sec. 3.3). We then turn to our experiments: first the datasets and evalu-

ation methods used (Sec. 3.4), then experiments testing our method’s accuracy (Sec. 3.5),

and its robustness to decreasing the amount of training data and to mismatched train/test

conditions (Sec. 3.6). We further evaluate our system by comparison with previous work
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(Sec. 3.7), and by comparing regression models of variation in VOT induced by automatic

and manual measurements. In Sec. 3.9 we sum up, and discuss directions for future work.

3.2 Problem setting

In the problem of VOT measurement, we are given a segment of speech, containing a stop

consonant (plosive) followed by a voiced phone. The goal is to predict the time difference

between the onset of the stop burst and the onset of voicing in the following phone. The

speech segment can be of arbitrary length, but should include at most one burst, and its

beginning need not be precisely synchronized with the stop’s burst or closure; it is only

required that the segment begins before the burst onset.

Throughout this chapter we write scalars using lower case Latin letters (x), and vectors

using bold face letters (x). A sequence of elements is denoted with a bar (x̄) and its length

is written |x̄|.

We represent each speech segment by a sequence of acoustic feature vectors x̄ =

(x1, . . . ,xT ), where each xt (1 ≤ t ≤ T ) is a D-dimensional vector. We denote the do-

main of the feature vectors by X ⊂ RD. (The precise set of features used is described

below.) Because different segments have different lengths, T is not fixed; we denote by

X ∗ the set of all finite-length sequences over X . Each segment is associated with an onset

pair : tb ∈ T , the onset of the burst (in frames), and tv ∈ T , the onset of voicing of the fol-

lowing phone, where T = {1, . . . , T}. Given the speech segment x̄, our goal is to predict

tv− tb: the length of time that passes between the beginning of the stop consonant’s burst

and the beginning of voicing in the following voiced phone. We assume here that tb < tv,

and leave the case of “prevoiced” stops (where tb > tv), to future work. Our goal is to

learn a function f from the domain of all speech segments X ∗ to the domain of all onset

pairs T 2.
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3.3 Learning apparatus

In this section we describe a discriminative supervised learning approach for learning a

function f from a training set of examples. Each example consists of a speech segment x̄

and a label (tb, tv). Our goal is to find a function that performs well on the training set,

as well as on unseen examples. The performance of f is measured by the percentage of

predicted VOT values, tv − tb, which are within a time threshold of the manually-labeled

values.

Formally, given a speech segment x̄, let (t̂b, t̂v) = f(x̄) be the predicted onset pair.

The cost associated with predicting (t̂b, t̂v) when the manually-labeled pair is (tb, tv) is

measured by a cost function, γ : T 2 × T 2 → R. The function used in our experiments is

of the form:

γ
(
(tb, tv), (t̂b, t̂v)

)
= max{|(t̂v − t̂b)− (tv − tb)| − ε, 0}, (3.1)

that is, only differences between the predicted VOT and the manually labeled VOT that

are greater than a threshold ε, are penalized. This cost function takes into account that

manual measurements are not exact, and ε can be adjusted according to the level of mea-

surement uncertainty in a dataset. For brevity, we denote γ = γ
(
(tb, tv), (t̂b, t̂v)

)
.

We assume that the training examples are drawn fromQ, a fixed (but unknown) distri-

bution over the domain of the examples, X ∗×T 2. The goal of training is to find the f that

minimizes the expected cost between predicted and manually-labeled VOT on examples

from Q, where the expectation is taken with respect to this distribution:

E(x,tb,tv)∼Q
[
γ
(
(tb, tv), f(x̄)

)]
.

Unfortunately, because we do not know Q, we cannot simply compute this expectation.

However, it still turns out to be possible to find f under lenient assumptions. We assume

that our training examples are identically and independently distributed (i.i.d.) according
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to the distribution Q, and that f is of a specific parameterized form. Below, we explain

how to use the training set in order to find parameters of f which achieve a small cost on

the training set, and a small cost on unseen examples with high probability as well.

We first describe the specific form used for the function f . Following the structured

prediction scheme (Taskar et al., 2003; Tsochantaridis et al., 2004), f is constructed from a

predefined set of N feature maps, {φj}Nj=1, each a function of the form φj : X ∗ × T 2 → R.

That is, each feature map takes a speech segment x̄ and a proposed onset pair (tb, tv), and

returns a scalar which, intuitively, should be higher if the onset pair makes sense given

the speech segment, and should be lower if it does not. Each feature map can be thought

of as an estimation of the probability of the onset pair given the speech segment (although

the feature map need not actually be a proper probability distribution). For example, one

feature map we use is the average energy of x̄ over frames in tb to tv, minus the average

energy over frames in 1 to tb. This feature map is expected to be high if tb and tv are

located at the beginning and end of a stop burst following a closure, and low otherwise.

Other feature maps might target the proper location of tv or tb (individually), or target

VOT values (tv − tb) within a particular range. Note that the features, which the sequence

x̄ is composed of, are oblivious to the locations of tb and tv, whereas the feature maps are

specifically tailored to handle them.

Our VOT prediction function f is a linear function of the feature maps, where each

feature map φj is scaled by a weight wj . Linearity is not a very strong restriction, since

the feature maps are arbitrary (so a non-linear dependency could be included as a further

feature map). The overall score of an onset pair (tb, tv) is

N∑

j=1

wjφj(x̄, tb, tv) = w · φ(x̄, tb, tv),

where we use vector notation for the feature maps, φ = (φ1, . . . , φN ), and for the weights
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w = (w1, . . . , wN ). Given x̄, f returns the onset pair which maximizes the overall score:

f(x̄) = arg max
(tb,tv)

w · φ(x̄, tb, tv), (3.2)

In words, f gets as input a speech segment x̄ composed of a sequence of acoustic features,

and returns a predicted onset pair by maximizing a weighted sum of the scores returned

by each feature map φj .

We now describe the set of feature maps used (Sec. 3.3.1), then turn to how w is es-

timated from a training set of examples, so as to minimize the cost function defined in

Eq. (3.1) (Sec. 3.3.2).

3.3.1 Features and feature maps

Consider the speech segment x̄ = (x1, . . . ,xT ) consisting of T frames, where each acoustic

feature vector xt consists of D features. We extracted 7 (D = 7) acoustic features every

1 ms. The first 4 features refer to a short-time Fourier transform (STFT) taken with a 5

ms Hamming window: the log of the total spectral energy, Etotal; the log of the energy

between 50–1000 Hz, Elow; the log of the energy above 3000 Hz, Ehigh; and the Wiener

entropy, Hwiener, a measure of spectral flatness:

Hwiener(t) = log

∫
|P (f, t)|2df −

∫
log |P (f, t)|2df,

where P (f, t) is the STFT of the signal at frequency f and time t. The low frame rate and

window size are used for fine time resolution, because the burst and voicing onsets are

highly transient events.

The fifth feature, Rl, is extracted from the signal itself: the maximum of the FFT of

its autocorrelation function, starting 6 ms before and ending 18 ms after the frame cen-

ter. The sixth feature is the 0/1 output of a voicing detector based on the RAPT pitch
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Figure 3.1: Values of the seven acoustic features for an example speech segment (the word
“can’t”). Vertical lines show the burst and voicing onsets.

tracker (Talkin, 1995), smoothed with a 5 ms Hamming window. The seventh feature is

the number of zero crossings in a 5 ms window around the frame center. Fig. 3.1 shows

the trajectories of the 7 features for one speech segment (the word “can’t”).

Before presenting the feature maps, we introduce notation for local differences. Let xd

be the dth acoustic feature (of an arbitrary speech segment). ∆s
t (x

d), the local difference

of resolution s applied to the acoustic feature xd, is defined as the difference between the

mean of xd over frames {t, . . . ,min(t + s, T )} and the mean of xd over frames {max(t −

s, 0), . . . , t}. This quantity provides a local approximation of the derivative of xd at frame

t, with resolution parametrized by s.

We now turn to the feature maps. For each example (x̄, tb, tv), 61 feature maps (N =

61) were calculated. As described above, each feature map describes a scalar quantity that

30



should be high for an onset pair which makes sense given the speech segment, and low

otherwise. To ensure comparability of the values of feature maps across examples, each

feature map was standardized (centered and divided by its standard deviation) within

each example.

The feature maps are summarized in Table 3.1, where they are split into 7 types. We

describe the intuition behind each type in turn.

Type 1: We expect the correct tb to occur at points of rapid increase in certain fea-

tures, such as Ehigh, indicating the onset of turbulent airflow; at these points the

corresponding local difference features (denoted by ∆ in Table 3.1) spike. In the

example (Fig. 3.1), Ehigh and Hwiener rapidly increase at the correct tb. The inclu-

sion of the values of some features (denoted by F in Table 3.1) at tb helps rule out

locations where a feature rapidly changes, but already has a high value.

Type 2: Similar to Type 1, but for features expected to change rapidly at voicing

onset. In the example, all features change rapidly near the correct tv.

Type 3: We expect Rl to not change during the burst (where there is no periodicity);

hence the mean and maximum of its local difference over (tb, tv) should be low, as

is the case in the example.

Type 4: Similar to Type 3, but taking into account that periodicity can begin towards

the end of the burst; hence the mean and maximum are calculated over (tb, tv − 10).

Type 5: Features indicating an aperiodic spectrum (Ehigh, Hwiener) should be much

greater during the burst than before the burst. Hence, the difference between their

mean in (tb, tv) and in (1, tb) should be large, as is the case in the example.

Types 6, 7: Features indicating a noisy spectrum (Ehigh, Hwiener) should be uni-

formly low before the burst begins, and hence should have small mean and max

values over (1, tb− 5). (An endpoint slightly before tb is used because these features
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Table 3.1: Summary of the 61 feature maps. The feature maps fall into several types
described in the text, each of which is evaluated for some of the 7 acoustic features (one
per column). (“V” and “ZC” in columns 7–8 stand for “voicing” and “zero crossings”.)
F in row i and column corresponding to feature xj indicates that there is a feature map
of type i for feature xj ; ∆ indicates there are three feature maps of type i for the local
difference of feature xj , evaluated at s = 5, 10, 15. For example, the F,∆ in row 2, column
1 denotes four feature maps: Elow(tb), ∆5

tb
(Elow), ∆10

tb
(Elow), and ∆15

tb
(Elow).

Feature map type Etotal Elow Ehigh Hwiener Rl V ZC

1. Value at tb F,∆ ∆ F,∆ F,∆ ∆
2. Value at tv F,∆ F,∆ F,∆ F,∆ F,∆ ∆ ∆
3. Mean & max over (tb, tv) ∆
4. Mean & max over (tb, tv − 10) ∆
5. Mean over (tb, tv) −mean over (1, tb) F F
6. Mean over (1, tb − 5) F F F
7. Max over (1, tb − 5) F F

may already be rising by the burst onset.) We also expect there to be little voicing in

this interval, and hence the voicing feature should have a low mean value.

The feature maps were chosen based on manual inspection of trajectories of the 7

acoustic features for labeled examples. They reflect knowledge about the effects of stop

bursts and voicing on the spectrum, as well as knowledge about the process of VOT mea-

surement itself. For example, feature types 3–4 take into account that the point labeled

as the voicing onset can be somewhat later than the first signs of periodicity (Type 4), or

synchronous with them (Type 3).3

3.3.2 A discriminative algorithm

We now describe a simple iterative algorithm for learning the weight vector w, based

on the Passive-Aggressive family of algorithms for structured prediction of Crammer et al.

(2006), where the interested reader can find a more detailed description. Pseudocode for

the algorithm is given in Fig. 3.2.

3. Francis et al. (2003) discuss the relationship between voicing onset’s true location and common criteria
for annotating it based on the speech signal.
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Input: training set S = {(x̄1, t1b , t
1
v), . . . , (x̄

m, tmb , t
m
v )} ;

parameters C and ε

Initialization: w0 = 0

For τ = 1, 2, . . .

Pick example (x̄i, tib, t
i
v) from S

Predict

(t̂τb , t̂
τ
v) = arg max

(tb,tv)
wτ−1·φ(x̄i, tb, tv) + γ((tb, tv), (t

i
b, t

i
v))

Set ∆φτ = φ(x̄i, tib, t
i
v)− φ(x̄i, t̂τb , t̂

τ
v)

Set ατ = min

{
C,
γ
(
(tb, tv), (t̂

τ
b , t̂

τ
v)
)
−wτ−1 ·∆φτ

‖∆φτ‖2

}

Set wτ = wτ−1 + ατ∆φτ

Output: w∗ =
∑

τ w
τ

FIG. 2. Passive-Aggressive algorithm for training the VOT prediction function.

ith example. Intuitively, we would like to minimize the loss of the current example (the slack

variable ξ) while keeping the weight vector w as close as possible to our previous weight

vector wτ−1. The constraint ensures that the projection of the manually-labeled onset pair

(tib, t
i
v) onto w is higher than the projection of the predicted pair (t̂τb , t̂

τ
v) onto w by at least

the cost function between them (γτ ). It can be shown (Crammer et al., 2006) that the

solution to the above optimization problem is

wτ = wτ−1 + ατ∆φτ , (5)

where ∆φτ = φ(x̄i, tib, t
i
v)−φ(x̄i, t̂τb , t̂

τ
v). The value of the scalar ατ , shown in Fig. 2, is based

on the cost function γτ , the different scores that the manually-labeled onset pair and the

predicted pair received according to wτ−1, and a parameter C.

Given a training set of m examples we iterate over its elements, possibly M times

13

Figure 3.2: Passive-Aggressive algorithm for training the VOT prediction function.
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The algorithm receives as input a training set S = {(x̄i, tib, tiv)}mi=1 of m examples and

a parameter C, and works in rounds. At each round, an example is presented to the

algorithm, and the weight vector w is updated. We denote by wτ the value of the weight

vector after the τ th iteration. Initially we set w0 = 0. Let (t̂τb , t̂
τ
v) be the cost-adjusted

prediction onset pair for the ith example according to wτ−1,

(t̂τb , t̂
τ
v) = arg max

(tb,tv)
wτ−1 · φ(x̄i, tb, tv) + γ

(
(tb, tv), (t

i
b, t

i
v)
)
. (3.3)

We set the weight vector wτ to be the minimizer of the following optimization prob-

lem,

min
w,ξ≥0

1

2
|w −wτ−1|2 + Cξ (3.4)

s.t. w · φ(x̄i, tib, t
i
v)−w · φ(x̄i, t̂τb , t̂

τ
v) ≥ γτ − ξ ,

where γτ = γ
(
(tb, tv), (t̂

τ
b , t̂

τ
v)
)
, C serves as a complexity-accuracy trade-off parameter

(as in the SVM algorithm), and ξ is a non-negative slack variable which indicates the

loss of the ith example. Intuitively, we would like to minimize the loss of the current

example (the slack variable ξ) while keeping the weight vector w as close as possible

to our previous weight vector wτ−1. The constraint ensures that the projection of the

manually-labeled onset pair (tib, t
i
v) onto w is higher than the projection of the predicted

pair (t̂τb , t̂
τ
v) onto w by at least the cost function between them (γτ ). It can be shown

(Crammer et al., 2006) that the solution to the above optimization problem is

wτ = wτ−1 + ατ∆φτ , (3.5)

where ∆φτ = φ(x̄i, tib, t
i
v) − φ(x̄i, t̂τb , t̂

τ
v). The value of the scalar ατ , shown in Fig. 3.2,

is based on the cost function γτ , the different scores that the manually-labeled onset pair

and the predicted pair received according to wτ−1, and a parameter C.
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Given a training set of m examples we iterate over its elements, possibly M times

(epochs), and update the weight vectorM ·m times. To classify unseen utterances, we use

the average of {w1, . . . ,wMm}, denoted by w∗.

A theoretical analysis (Dekel et al., 2004; Keshet et al., 2007) shows that with high

probability, the function learned using our algorithm will have good generalization prop-

erties: the expected value of the cost function when the algorithm is applied to unseen

data is upper-bounded by the loss of the algorithm during training, plus a complexity

term that goes to zero linearly with the number of training examples. For readers famil-

iar with structural SVMs (Taskar et al., 2003; Tsochantaridis et al., 2004), we note that the

same analysis suggests that the average loss of the Passive-Aggressive solution is com-

parable to the average loss of the structural SVM solution, while the structured Passive-

Aggressive algorithm is much easier to implement and faster to train.

3.4 Experiments: Preliminaries

We first describe the datasets used in our experiments (Sec. 3.4.1), and the different meth-

ods used to evaluate the algorithm’s performance (Sec. 3.4.2).

3.4.1 Datasets

Our experiments make use of four datasets, each consisting of audio of English words

beginning with voiceless stops (/p/, /t/, /k/). For each word, the algorithm described

above for training a VOT prediction function requires the VOT boundaries (tb, tv) and the

word boundaries (where to begin and end searching for the VOT). We describe how VOT

boundaries and word boundaries were annotated for each dataset, and briefly describe

relevant aspects of each dataset.

The datasets vary along several dimensions, summarized in Table 3.2. Their speak-

ing styles range in naturalness, from isolated words to read sentences to conversational
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Table 3.2: Comparison of datasets used in experiments. A=American, B=British, L1=first-
language, L2=second-language.

Dataset Style Dialect Environment N

TIMIT read sentences A laboratory 5535
BB conversational B TV studio 704

SWITCHBOARD conversational A telephone 893
PGWORDS isolated words A (L1, L2) laboratory 6795

speech. Three broad types of English accents are represented (American, British, Portuguese-

accented). Finally, the recording conditions vary greatly. We perform experiments on

several different datasets in order to test the robustness of our approach. The promise

of learning a function to measure VOT is that it should perform well on diverse datasets

because it can be re-trained on data from each one. By using several datasets, we show

empirically that this is the case.

TIMIT The TIMIT corpus (Garofolo et al., 1993) consists of segmentally-transcribed sen-

tences read by 630 American English speakers from 8 dialect regions. It is widely used

by speech recognition researchers, and to a lesser extent by phoneticians (e.g., Keating

et al., 1994). The TIMIT transcriptions are phonetic rather than phonemic, and there are

two phone labels corresponding to each stop phoneme (/p/, /t/, /k/, /b/, /d/, /g/),

for the closure and burst (e.g., pcl and p for /p/). Thus, each underlying stop can be an-

notated as a closure alone, a burst alone, a closure and burst, a different phone altogether,

or nothing (if it is deleted). We restrict ourselves to all words (excluding the SA1 and SA2

utterances)4 transcribed as beginning with an unvoiced stop burst (either preceded by a

closure or not), followed by a voiced segment; this results in 5535 tokens, from all 630

speakers.

4. These correspond to two sentences which are produced by all speakers in TIMIT; all other utterances
correspond to sentences which are produced by a subset of speakers, or a single speaker. Thus, there are
many more stops from SA1 and SA2 utterances than from other utterances, and we risk overfitting to stops
from SA utterances if they are not excluded. Omitting the SA utterances is a common step in studies which
use TIMIT, to prevent overfitting.
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The VOT boundaries (tb, tv) were taken to be the burst boundaries from the TIMIT

transcription. Because the burst sometimes ends after the onset of voicing, this step is an

approximation, one which allows us to take advantage of the size of TIMIT, and test our

algorithm on a widely used dataset. The word boundaries were also taken from the TIMIT

transcription, except for some pathological cases where a word boundary coincided with

the beginning or end of the burst. For words annotated as beginning with only a burst

(and no closure), the left word boundary was taken to be 50 ms before the burst onset.

For words annotated as consisting solely of an unvoiced stop (e.g., “to” transcribed as

tcl t), the right word boundary was taken to be 25 ms after the end of the burst. These

corrections were made because our algorithm assumes that the burst and voicing onsets

lie within the host word.

Big Brother (BB) This dataset comes from spontaneous speech in the Big Brother corpus

examined in this thesis. Sound quality is generally very good (see Sec. 5.2). The data

are a subset of 704 tokens from the manually-annotated corpus of VOTs for word-initial

voiceless stops described in Sec. 5.2.2, annotated by (one of) two transcribers. The end

of each word has also been annotated. Because the beginnings of words have not been

annotated, we took the left word boundary of each word to be 25 msec before the burst

onset. Stops with no following voiced segment were kept if there was still abrupt spectral

change at the end of the burst, and excluded otherwise.

Switchboard The Switchboard corpus (Godfrey and Holliman, 1997) consists of spon-

taneous speech from telephone conversations between American English speakers. We

chose subsets of 8 conversations, corresponding to 16 speakers. VOTs for all word-initial

voiceless stops in these subsets were manually annotated by one transcriber if a burst was

present (e.g., the stop was not realized as a flap), resulting in 893 examples. The bound-

aries of each word were manually determined. When a word boundary coincided with

the burst or voicing onset (e.g., for a word realized as an isolated stop, with no following
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voicing), the word boundary was adjusted slightly left or right (for the left or right word

boundaries, respectively), because our algorithm assumes that the burst and voicing on-

sets lie within the host word.

Paterson/Goldrick words (PGWORDS) This corpus consists of data from a laboratory

study by Nattalia Paterson and Matt Goldrick (Paterson, 2011), investigating VOT in the

speech of American English monolinguals and Brazilian Portuguese (L1)-English bilin-

guals. In this study, each of 48 speakers (24 monolinguals, 24 bilinguals) produced 144

isolated words, each beginning with a stop (/p/, /t/, /k/, /b/, /d/, /g/), in a pic-

ture naming task. Productions other than the intended label as well as those with code-

switching or disfluencies were excluded. The VOT of each remaining word was manually

measured by a single transcriber. We consider a subset of 6795 VOTs from this data, only

from words beginning with voiceless stops. Because this dataset consists of words spo-

ken in isolation, the choice of word boundaries is somewhat arbitrary. We took the left

boundary to be 50 ms before the burst onset and the right boundary to be when the next

prompt was given to the subject (1–3 seconds later).

3.4.2 Evaluation methods

There is no single obvious method for evaluating the performance of an automatic VOT

measurement algorithm. Several methods have been used in previous work on automatic

measurement, all based on the degree of discrepancy between automatic and manual

measurements. Below, we measure our algorithm’s performance by three methods: pure

automatic/manual measurement discrepancy, comparison of automatic/manual discrep-

ancy to intertranscriber agreement, and comparison of statistical models fit to automatic

and manual measurements. We now describe each method and its motivation.
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Distribution of automatic/manual difference The most common evaluation method

used in previous work is examination of the distribution of differences between auto-

matic and manual VOT measurements across a dataset. The algorithm’s performance can

then be reported either as the full (empirical) CDF of automatic/manual differences (as in

Stouten and van Hamme, 2009), or as the percentage of examples with automatic/manual

difference below some fixed set of values, the tolerances (as in Lin and Wang, 2011) . Re-

porting statistics about the CDF of automatic/manual differences is a standard evalua-

tion method in ASR tasks, such as forced alignment of phoneme sequences, where the

goal is to predict the location of boundaries in a speech segment (e.g., Brugnara et al.,

1993; Keshet et al., 2007). The full CDF gives a more complete picture of experimental

performance, while performances at fixed tolerances are easier to interpret. We usually

report results in both ways below when discussing the distribution of automatic/manual

differences for an experiment (e.g., Fig. 3.3, Table 3.3).

Two other evaluation methods, where a single measure of error is calculated from the

set of automatic/manual differences, have also been used in previous work. These are

discussed in Sec. 3.7, where they are used to compare our algorithm with previous work.

Comparison to interrater reliability A disadvantage of evaluation using the distribu-

tion of automatic/manual differences is that it is not clear what the gold standard is.

VOT measurements for the same example are expected to vary somewhat between tran-

scribers, or within a single transcriber (measuring at different times). Intuitively, progres-

sively better automatic/manual agreement is good up to a point, but automatic/manual

agreement which is too good means overfitting to the particular set of manual measure-

ments. One solution is to compare the automatic/manual CDF to interrater reliability

(IRR): a CDF of differences between two transcribers’ VOT measurements. In this view,

the gold standard is for automatic and manual measurements to agree as well as two sets

of manual measurements from the same dataset. We compare the predicted/manual dif-
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ference CDF to an IRR CDF for experiments on all datasets where IRR data is available

(BB, SWITCHBOARD, PGWORDS).

Model-based comparison Our last evaluation method is more directly related to the set-

ting in which VOT is usually measured: phonetic studies addressing clinical or theoretical

questions. In such studies, the question is how some predictor variables—such as the stop

consonant’s place of articulation, or whether the speaker has Parkinson’s disease—affects

VOT across a dataset. This is typically assessed by performing a statistical analysis (such

as ANOVA or multiple linear regression) of the effect of the predictors on VOT, and re-

porting the statistical significance and values of model parameters of interest. Thus, to

test whether automatic VOT measurements from our algorithm can be used to replace

manual measurements, a sensible test is to compare the statistical models induced from

automatic and manual measurements for the same dataset, rather than directly compar-

ing the automatic and measurements of individual tokens (as in the evaluation methods

described above). The goal is for the values and statistical significances of the two models

to be as similar as possible. We note that good performance on this model-based evalu-

ation method does not trivially follow from good performance on an evaluation method

based on individual tokens, or vice versa.

3.4.3 Experiments: Overview

The next four sections describe a series of experiments to evaluate the algorithm’s per-

formance, using each of the evaluation methods just described. In Sec. 3.5 we describe

experiments using the full amount of data available, and where training and testing data

are (disjoint subsets) from the same dataset; we call these base experiments. We then (Sec.

3.6) evaluate the robustness of the results obtained in the base experiments to decreasing

the amount of training data, or training and testing on different datasets. In Sec. 3.7 we

compare our algorithm to previous work as closely as possible. Finally, we evaluate the
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algorithm by model-based comparison (Sec. 3.8).

In all experiments, we only considered burst onsets tb within 0–150 ms of the start of

the word, and voicing onsets tv 15–200 ms later than tb; this step attempts to restrict the

algorithm’s focus to the first two segments of each word.

3.5 Experiments I: Base

The evaluation method used for the base experiments is simply the distribution of auto-

matic/manual differences. Where IRR data is available (all datasets except TIMIT), this

distribution is compared to the distribution of differences between transcribers.

The structure of each base experiment was the same: the dataset was split into train-

ing, development, and test sets corresponding to subsets of speakers. The parameters

C, ε, and M (number of epochs) were tuned by training a weight vector on the training

set for each parameter triplet in the ranges C ∈ 0.01, 0.1, 1, 5, 10, 100, ε ∈ {2, 3, 4, 5}, and

M ∈ {1, 2, 3, 4, 5} (for TIMIT, PGWORDS) orM ∈ {1, 2, 3, 4, 5, 6, 7, 9, 11, 15} (for BB, SWITCH-

BOARD).5 The weight vector was selected that gave the lowest mean absolute difference

between predicted and actual VOT over examples in the development set. This w∗ was

then applied to predict VOTs for examples in the test set.

For each experiment, Fig. 3.3 and Table 3.3 summarize the distribution of automatic/manual

differences over the test set, and the distribution of intertranscriber differences over the

set of double-transcribed examples (except for TIMIT).

3.5.1 Big Brother

For the BB dataset, the training/development/test sets consisted of 405/142/160 exam-

ples (2/1/1 speakers), and the parameter values chosen by tuning on the development

5. For the two larger datasets (TIMIT and PGWORDS), experiments for M > 5 took prohibitively long,
and it was clear that performance worsened for M > 2.
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Figure 3.3: Performance on BB, SWITCHBOARD, and PGWORDS datasets in base experi-
ments (Sec. 3.5). For each dataset, distributions are given of absolute differences between
automatic and manual measurements, and between two human transcribers (IRR).

set were C = 5, ε = 3, and M = 15. A subset of the data (108 stops; 15.3%) was double-

transcribed, by two independent transcribers. (Neither one trained the other, and there

was no attempt made to synchronize transcription criteria.)

In comparison to IRR, the algorithm performs very well: the automatic/manual curve

and the IRR curve are essentially the same. That is, the automatic measurements match

manual measurements as well as two human transcribers match each other.

3.5.2 Switchboard

For the SWITCHBOARD dataset, the training/development/test sets consisted of 563/102/288

examples (6/1/2 speakers), and the parameter values chosen by tuning on the develop-

ment set were C = 1, ε = 5, and M = 5. A subset of the data (171 stops; 19.1%) was

double-transcribed, by two semi-independent transcribers. (One transcriber had trained

the other about one year previously, on a different dataset, but no attempt at synchroniz-

ing transcription criteria was made for the SWITCHBOARD data.)

The algorithm again performs very well, by comparison to IRR: automatic/manual

differences are slightly lower than inter-transcriber differences at tolerances up to about
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Table 3.3: Performance in base experiments (Sec. 3.5), given as percentage of examples in
the test set with automatic/manual difference (for all datasets) or inter-transcriber differ-
ence (for all datasets except TIMIT) below a series of fixed tolerance values. (For example,
46.1% of examples in the TIMIT test set had automatic and manual measurements differ-
ing by ≤2 ms.)

Dataset Experiment ≤ 2 ms ≤ 5 ms ≤ 10 ms ≤ 15 ms ≤ 25 ms ≤ 50 ms

BB
Auto/manual 53.5 79.3 88.1 93.1 96.2 98.7
Intertranscriber 54.4 79.6 89.3 93.2 96.1 99.0

SWITCHBOARD
Auto/manual 53.1 73.3 83.3 89.0 93.4 96.5
Intertranscriber 52.9 70.0 82.4 88.8 94.1 99.4

PGWORDS
Auto/manual 49.1 81.3 93.9 96.0 97.2 98.1
Intertranscriber 61.9 90.0 96.9 98.6 99.5 100.0

TIMIT Auto/manual 46.1 67.2 85.0 94.7 98.1 99.0

20 ms, and slightly higher above 20 ms, becoming significantly higher above 40 ms.

3.5.3 Paterson/Goldrick words

For the PGWORDS dataset, the training/development/test sets consisted of 4151/403/1340

examples (28/3/6 speakers), and the parameter values chosen by tuning on the devel-

opment set were C = 10, ε = 5, and M = 2. A subset of the data (591 stops; 7.3%)

was double-transcribed, by two transcribers. (One transcriber trained the other, and they

worked together on synchronizing measurement criteria for this dataset.)

The algorithm performs less well on this dataset than for BB or SWITCHBOARD, by

comparison to IRR: automatic/manual VOT measurement differences are higher than

inter-transcriber differences, at all tolerances. A possible explanation for this difference

in performance is that the intertranscriber data for the three datasets are not compara-

ble. The transcribers for PGWORDS worked together to synchronize their measurement

criteria on this dataset, while the transcribers for BB and SWITCHBOARD did not. Thus,

the algorithm’s performance on PGWORDS might be closer to IRR if intertranscriber data

were used from two independent transcribers.
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3.5.4 TIMIT

For the TIMIT dataset, we used Halberstadt’s (1998) split of speakers into training, de-

velopment, and test sets (specifically, “full” test) consisting of 4132/397/1006 examples

(462/50/118 speakers). The parameter values chosen by tuning on the development set

were C = 5, ε = 4, and M = 2.

Performance for TIMIT is worse than other datasets (greater automatic/manual dif-

ferences) for tolerances up to about 10 ms, and slightly better at tolerances above 10 ms.

However, it is not clear how comparable the results for different datasets are, given that

the TIMIT annotations actually denote burst boundaries rather than VOT. Below (Sec. 3.7)

we will more directly evaluate our TIMIT results, by comparing them with previous work

on automatic VOT estimation that also uses test data from TIMIT.

3.6 Experiments II: Robustness

The base experiments show that our algorithm generally performs very well on several

datasets, evaluated against IRR; we show below that it also performs well relative to

previous work (Sec. 3.7). However, in both cases we assume ideal training conditions: a

relatively large training set is available to train w∗, and the training and test sets consist of

examples from the same corpus. In contrast, the typical use case for a VOT measurement

algorithm is a corpus where little or no annotated data is available. For our algorithm

to be practically useful, we must test how performance varies as these conditions are

relaxed. If relatively few examples are needed to train w∗, other researchers can annotate

a small subset of data to train our algorithm; if performance varies little when the training

and test corpora are not the same, researchers working on a new dataset can use one of our

weight vectors pre-trained on a large corpus. This section presents experiments testing

the algorithm’s robustness to decreasing the amount of training data (Sec. 3.6.1), and to

mismatched training and testing datasets, where a weight vector trained on one corpus is
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used to measure VOT for data from a different test corpus (Sec. 3.6.2).

3.6.1 Varying the amount of training data

For each of the base experiments, we tested the robustness of our algorithm to decreasing

the amount of training data, holding the test set constant, as follows. Let N be the size

of the training set for a given experiment. We chose a series of percentages p of the test

set, such that pN spanned the range (0, N ], including N (p = 1). (We did not use the same

values of p for each dataset because N varies greatly across our datasets.) For each p we

chose a random subset of the training set of size pN and re-ran the experiment, using the

same test set as the original (p = 1) experiment, and using the same parameter values

(for C, ε, and M ) as in the original experiment. Since the results depend on the particular

subset of pN chosen, this procedure was repeated 25 times for each p.

The results of the experiments are summarized in Fig. 3.4. To focus on how perfor-

mance changes as the amount of training data is decreased, we show results only for

a subset of tolerances (and do not show the full CDFs of automatic/manual differences).

Each point and its associated errorbars represent the mean and± two standard deviations

of the 25 runs at a fixed amount of training data.

For all datasets, the algorithm’s performance is extremely robust to decreasing the

amount of data. Performance stays essentially constant (mean performance within 2σ

of performance at the highest N ) (error bars overlap with those for the full training set)

—until the amount of data is decreased below 250 training examples for PGWORDS and

TIMIT, and below 25–50 examples for SWITCHBOARD and BB. Performance decreases more

at lower tolerances (2–5 ms) than at higher tolerances (10–50 ms), especially for TIMIT

and PGWORDS. To speak more quantitatively, we can focus on performance at 10 ms

tolerance, shown in Table 3.4. Across all datasets, training on just 25 examples decreases

performance at this tolerance by 1.8%–5.2%. These results suggest our algorithm can be

quickly adapted to a new dataset with little training data.
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Figure 3.4: Results for experiments varying the amount of training data (Sec. 3.6.1): Per-
centage of tokens with automatic/manual difference below tolerance values (2, 5, 10, 20,
50 msec) as the amount of training data is varied. Points and errorbars indicate means ±
2 standard deviations across 25 runs.

Table 3.4: Mean performance at 10 ms tolerance (across 25 runs) in experiments where
the amount of training data is decreased (Sec. 3.6.1), with number of training examples
in parentheses, for the lowest number of training examples (n1), the highest number of
training examples (N ), and the lowest number of training examples (n2) for which perfor-
mance is within 2σ of mean performance with the highest number of training examples.

Dataset n1 n2 N

BB 86.4 (24) 86.4 (24) 88.2 (404)
SWITCHBOARD 78.6 (23) 78.6 (23) 83.8 (563)
TIMIT 80.8 (25) 82.5 (99) 84.7 (4132)
PGWORDS 89.8 (25) 91.2 (100) 93.5 (4151)
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Table 3.5: Mean performance at 10 ms tolerance in experiments with mismatched training
and test corpora (Sec. 3.6.2).

Test corpus
Training corpus BB SWITCHBOARD TIMIT PGWORDS

BB 88.0 79.4 75.6 77.2
SWITCHBOARD 84.3 83.3 78.0 86.9
TIMIT 81.1 81.1 84.8 84.9
PGWORDS 77.4 74.1 83.9 93.9

3.6.2 Mismatched training and test corpora

We now test how the algorithm’s performance varies when different training and testing

corpora are used. To compare to the base experiments (where the training set and test set

were drawn from the same corpus), we conduct 12 additional experiments, correspond-

ing to all possible choices of two distinct datasets for training and testing w∗. We denote

the weight vectors trained on each corpus in the base experiments as w∗TIMIT, etc. The

weight vector for each corpus is applied to give automatic measurements for examples in

the test sets of the other three corpora.

The distributions of automatic/manual differences for each pair of training and testing

corpora are shown in Fig. 3.5. To discuss performance differences quantitatively, it will

again be helpful to refer to performances at 10 ms for each curve, given in Table 3.5.

We note some patterns in these results. First, examining the full CDFs, it is always the

case that the best performance for a test set from a given corpus is achieved using training

data from that corpus. (This is visually clear except for the TIMIT test set, where the CDF

corresponding to w∗TIMIT is in fact higher than the CDF corresponding to w∗PGWORDS at all

tolerances.) Better performance when training and test data are drawn from the same

distribution is not surprising, but it is useful to investigate how much performance drop

to expect, for potential applications of the algorithm where re-training on data drawn

from the same distribution as the test corpus would not be possible. (For example, real-

time VOT detection in a novel recording environment)
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Figure 3.5: Distribution of automatic/manual differences as a function of the dataset the
training set is drawn from, holding the test set constant. Lines for mismatched train/test
datasets correspond to experiments described in Sec. 3.6.2. Lines for same train/test
datasets correspond to the base experiments (Sec. 3.5).
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How performance changes when different training and test corpora are used depends

largely on the test corpus. For the BB, TIMIT, and SWITCHBOARD test sets, there is sig-

nificant variance in how much using a different test corpus affects performance (1–11%

at 10 ms), with some mismatched train/test pairs achieving performance near the corre-

sponding matched train/test conditions in certain tolerance ranges. Performance on the

PGWORDS test set is more dramatically affected by training on a different corpus, with a

7-17% performance drop at 10 ms depending on the training set. It is not clear why chang-

ing the weight vector used matters more for PGWORDS, compared to the other datasets.

3.6.3 Discussion

In this section, we have described experiments testing the robustness of our algorithm’s

performance to decreasing the amount of training data, and on mismatched training and

test conditions. We found that performance is very robust to decreasing the amount of

training data, and that the effect of mismatched training and test datasets depends on the

particular datasets used. The motivation for these experiments was to determine whether

our algorithm can be practically useful in applications to new datasets, without manually

labeling a large amount of data. Our results suggest a positive answer: only a small

number of manually-labeled VOTs (<250) are needed for training, in addition to a small

number for validation (perhaps 50–200), to achieve near-maximum performance.

3.7 Evaluation I: Comparison with previous work

In this section, we compare our algorithm’s performance with all previous studies on

automatic VOT measurement (to our knowledge) that have examined agreement between

automatic and manual measurements. We are able to compare directly (testing on the

same test set) to two previous approaches (Lin and Wang, 2011; Stouten and van Hamme,

2009), and indirectly to two other approaches (Hansen et al., 2010; Yao, 2009a).
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Figure 3.6: Comparison of automatic/manual differences for test data from Stouten and
van Hamme (2009), using their algorithm and using our approach.

3.7.1 Stouten and van Hamme (2009)

Stouten and van Hamme (SvH) automatically measure VOT for stops from TIMIT, us-

ing a knowledge-based algorithm operating on time-frequency reassigned spectrograms.

They consider voiced and voiceless stops, in all positions. They performed manual mea-

surements for a subset of 582 stops (the “manual” dataset), and compared these to their

automatic measurements.

We applied our algorithm to the 293 voiceless stops from SvH’s “manual” dataset,

using w∗ from the TIMIT base experiment. Because we are now not dealing only with

stops in initial position, the left boundary where the algorithm begins searching for tb

was determined differently from our earlier TIMIT experiments. Each example was taken

to start at the beginning of the segment preceding the burst (i.e., the closure, if one was

present), and end at the right word boundary, where the segment and word boundaries

were taken from TIMIT.

Fig. 3.6 and Table 3.6 show the distribution of automatic/manual differences, rela-
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Table 3.6: Comparison of results for test data from Stouten and van Hamme (2009), using
their algorithm and using our approach.

Algorithm ≤ 2 ms ≤ 5 ms ≤ 10 ms ≤ 15 ms ≤ 25 ms ≤ 50 ms

Stouten and van Hamme (2009) 28.6 42.8 77.0 86.2 94.7 99.5
Our approach 44.6 67.6 85.1 91.1 94.1 96.1

tive to SvH’s manual measurements, for the two automatic measurement methods: our

method (with w∗ from the TIMIT base experiment) and SvH’s method. (The error distri-

bution is taken from their Fig. 5, using voiceless stops only.) Our method performs better

for tolerances below about 22 ms, corresponding to 94% of examples. We note that our

algorithm is at a significant disadvantage in this comparison: it was only trained on initial

stops, but tested in stops in all positions, and the training and testing data were labeled

by different annotators.

3.7.2 Lin and Wang (2011)

Lin and Wang automatically measure VOT for word-initial stops from TIMIT, using a

multi-step process. Their approach makes use of two tools: (1) an HMM-based forced

aligner, at either the state or phone level (they try both), using MFCC features; (2) two

random forest detectors, trained to detect the onset of a burst phone and the onset of

a voiced phone. For a given utterance, the forced aligner is first applied to the TIMIT

phone transcription to find the approximate location of the burst for each stop. For a

given stop, the random forest detectors are then deployed to find the burst and voicing

onsets, possibly selecting from several candidates. If no candidates are found for an onset,

the force-aligned burst boundary is used instead. The burst boundaries from the TIMIT

annotation are used as a proxy for VOT (as we also did in our TIMIT experiments above).

Lin and Wang test their algorithm on 2344 word-initial stops from the TIMIT test set,

of which 1174 are voiceless. We applied our algorithm to the voiceless stops, using the w∗

from our TIMIT experiments above. Because this set of voiceless stops forms a subset of
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Table 3.7: Comparison of results for test data from Lin and Wang (2011), using their algo-
rithm and using our approach.

< 5 ms < 10 ms < 15 ms < 20 ms

Lin & Wang (2009) 58.9 80.7 90.5 94.2
Our approach 60.5 81.4 93.0 96.8

the complete TIMIT test set used in our experiments above, the word boundaries for each

example have already been determined.

Table 3.7 shows performance on the test set for Lin and Wang’s method (their Table IV,

“voiceless” row) and our method. (Results are shown in the format used in their paper.)

Our algorithm gives better performance at all tolerances, on average by 1.8%.

There are two differences between our setup and that of Lin and Wang which bear

mentioning. First, as Lin and Wang note with respect to results reported in an earlier

version of the current study (Sonderegger and Keshet, 2010), our training set contains

data from many more TIMIT speakers than theirs (462 speakers in our setting versus 4

speakers in theirs). While the exact numbers of speakers used in the two approaches are

not comparable because of differences in the training procedures,6 we have shown above

(Sec. 3.6.1) that our method is very robust to decreasing the amount of training data.

Second, Lin and Wang use forced alignment of the TIMIT phone transcription to deter-

mine the approximate region to search for the burst and voicing onsets for a given stop,

while we simply assume that the word boundaries are known (using the TIMIT transcrip-

tion); it is possible that our results would worsen using force-aligned word boundaries

instead. However, experiments on the TIMIT test set reported in our earlier paper (Son-

deregger and Keshet, 2010) found no performance difference, suggesting that assuming

word boundaries are known is not responsible for our results.

6. Our algorithm only considers portions of the speech signal in the training utterances from words
beginning with initial voiceless stops; Lin and Wang’s random forest detectors are trained using all of the
training utterances. Thus, we believe the number of speakers whose utterances are used in training is not a
good method for comparing the amount of training data used in the two approaches.
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Table 3.8: Base experiments performance evaluated by metrics used by Yao (2009a) and
Hansen et al. (2010).

RMS tb error (ms) < 10% VOT error

TIMIT 6.5 66.5
BB 5.8 73.4
SWITCHBOARD 10.5 68.7
PGWORDS 6.8 81.2
Yao (2009a) 10.8 —
Hansen et al. (2010) — 74.9

3.7.3 Yao (2009a); Hansen et al. (2010)

Our results can be compared less directly with two other studies where automatic and

manual measurements are compared. Yao (2009a) determines VOT for initial voiceless

stops in the Buckeye Corpus, using MFCC “spectral templates” in a knowledge-based

algorithm. The evaluation metric used is the RMS error for automatic measurement of tb

only. Hansen et al. (2010) determines VOT for initial voiceless stops from CU-ACCENT,

a corpus of laboratory speech consisting of single-word productions by native and non-

native English speakers. They measure VOT with a knowledge-based algorithm, acting

on the Teager Energy Operator representation of the speech signal. The evaluation metric

used is the percentage of stops where the automatic measurement differs by <10% from

the manual measurement.

Table 3.8 gives these metrics for the experiments on our four datasets reported above.

With the caveat that comparison is difficult because of the different datasets used, our

experiments’ performance on these metrics compares favorably to previous work. All ex-

periments have RMS tb error less than Yao (2009a). Our best-performing experiment, PG-

WORDS, does better than Hansen et al. (2010) on the<10% VOT error metric. Importantly,

the PGWORDS dataset is arguably the most comparable to Hansen et al.’s CU-ACCENT

dataset: both consist of single-word productions in laboratory conditions, produced by

both native and non-native speakers.
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3.8 Evaluation II: Regression model comparison

We now evaluate the algorithm by comparing the regression models induced by auto-

matically and manually-measured data, as described above (Sec. 3.4.2), for the PGWORDS

dataset. We model two well-documented patterns of variation in VOT in this dataset.

VOT is affected by the stop consonant’s place of articulation, with the expected pattern

/p/</t/</k/; (e.g., Cho and Ladefoged, 1999). VOT is also affected by the speakers lin-

guistic knowledge. Bilinguals who speak languages with contrasting VOT systems pro-

duce distinct VOT patterns from monolingual speakers, reflecting the interaction of their

two linguistic systems. When speaking English, bilinguals whose native language con-

trasts prevoiced vs. short lag VOTs produce shorter VOTs than those of English monolin-

guals (e.g., Fowler et al., 2008). Thus, we expect the bilingual Portuguese-English speak-

ers to have lower VOT than the monolingual English speakers in the PGWORDS data.

3.8.1 Models

For each set of measurements (automatic, manual), we build a mixed-effects linear regres-

sion model of how VOT depends on two input variables: the speakers’s language back-

ground, and the place of articulation of the initial consonant of the host word.7 The mod-

els contain fixed effects for 3 predictors: language background (2 levels, dummy-coded;

base level=Portuguese/English bilingual), stop place of articulation (3 levels, dummy-

coded; base level=/p/), and the interaction of the two. By-speaker and by-word random

intercepts are also included. Thus, VOT is modeled as varying by place of articulation

and by language background, and the effect of place of articulation may differ between

L1 English and L2 English speakers. Individual speakers and words have characteristic

VOT values, normally distributed around the mean.

We constructed the automatic model and the manual model as follows. The PGWORDS

7. Background on mixed-effects regression is given in Chapter 2; the particular type of model used here
is described in Sec. 2.2.1.2.
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dataset was split into a split and heldout set, such that split contained a random

75% of data points for each speaker, and heldout contained the remaining 25%. An auto-

matic measurement was assigned to each data point in split by applying our algorithm

(with the values of C, M , and ε used for the PGWORDS base experiment), using four-fold

cross validation. (Speakers were split randomly into four groups; for each group, au-

tomatic VOT measurements were computed using w∗ trained on data from the other 3

groups.) Each data point in split now had one automatic and one manual measure-

ment, resulting in two datasets, differing only in whether VOT (yi, in the notation above)

was measured automatically or manually.

Each of the two datasets was trimmed for outliers, by discarding measurements fur-

ther than 3 standard deviations within a speaker. For each dataset, a model of the form

described above was fitted using the (Bates et al., 2011) package in R (Bates et al., 2011).

3.8.2 Results

We compare the automatic and manual models by comparing their fitted model parame-

ters, and their predictions on held-out data.

Comparison of model parameters Table 3.9 shows the fixed-effect coefficient estimates

(β̂), their standard errors (SE(β̂), and corresponding p-value (for a Wald test applied to

β̂/SE(β̂)). The estimates and standard errors are extremely similar in the two models,

with no fitted coefficient having a value in one model more than 1.25 standard errors

away from its value in the other model. The significances of the fixed effect coefficients

in the two models are also very similar: all coefficients are highly significant except the

interaction of L1 with the first place of articulation contrast, which is marginal in the

automatic model and not significant in the manual model.

The group means of the empirical data are /p/=67.9 ms, /t/=80.6 ms, /k/=79.7 ms

for monolinguals; and /p/=41.3 ms, /t/=52.8 ms, /k/=65.2 ms for bilinguals. The fixed
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Table 3.9: Summary of fixed effects in automatic and manual models: fixed effects coeffi-
cient estimates (β̂), their standard errors, associated t statistic (β̂/SE(β̂)), and p-values. ***
denotes p < 0.0001.

Automatic model Manual model

β̂ SE(β̂) t p β̂ SE(β̂) t p
Intercept 52.8 2.8 18.6 *** 51.5 2.9 17.7 ***

L1 11.0 2.4 4.6 *** 10.6 2.5 4.3 ***
POA=/t/ 8.9 2.1 4.3 *** 9.6 2.1 4.7 ***
POA=/k/ 17.1 1.7 10.3 *** 17.7 1.7 10.6 ***

L1:POA=/t/ 1.4 0.8 1.8 0.072 0.79 0.72 1.1 0.27
L1:POA=/k/ -4.7 0.7 -7.0 *** -5.5 0.6 -8.8 ***

effects for both models suggest that the trends observed in the empirical data are signifi-

cant. English speakers have longer VOTs than bilingual Portuguese-English speakers and

VOT depends on place of articulation as /p/</t/</k/, both expected results. There is

also a significant interaction between L1 and phone. For bilingual speakers the entire

/p/</t/</k/ pattern is significant. For monolinguals, the VOT difference between /p/

and /t/ is greater, and the VOT difference between /p/ and /k/ is smaller. The pattern

of VOT dependence on place of articulation is thus closer to /p/</t/=/k/ for mono-

linguals, consistent with some previous studies of VOT in English word-initial voiceless

stops (e.g., Cooper, 1991; Docherty, 1992).

Fig. 3.7 (left) plots the best linear unbiased predictors (BLUPs) of the random inter-

cepts for each speaker in the two models, with horizontal and vertical errorbars corre-

sponding to 95% confidence intervals in the manual and automatic models, respectively

(1.96×standard errors). The models predict similar deviations from the mean for each

speaker, with the confidence intervals for the automatic and manual by-word random in-

tercepts overlapping for all but 1 of the 34 speakers. Fig. 3.7 (right) is an analogous plot

for the random intercepts for each word. The models predict similar deviations from the

mean for each word, with the confidence intervals for the automatic and manual by-word

random intercepts overlapping for all 206 words.
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Figure 3.7: Estimated BLUPs for the by-speaker and by-word random intercepts. Hori-
zontal and vertical positions correspond to values in the manual and automatic models,
and horizontal and vertical errorbars corresponding to 95% confidence intervals in each
model (1.96×standard error).

Thus, both the fixed effects and random effects are very similar for the two models.

The similarity of the fixed effect coefficients means that the models make quantitatively

similar predictions for the effects of place of articulation and first language. The similarity

of the random effect BLUPs means that the two models predict similar deviations from

the overall mean for each individual speaker and word.

Comparison of model predictions Comparing the automatic and manual models’ pre-

dictions on the 25% of held-out data gives a sense of how similar their predictions are on

unseen data. The two models make extremely similar predictions, differing by ≤ 5 msec

for 90.2% of data points in the held-out set, and with correlation r = 0.992 and mean abso-

lute difference 2.31 ms across all data points in this set. By comparison, measurements by

two human transcribers on a subset of the PGWORDS dataset (see Sec. 3.5.3) differ by ≤ 5

ms for 90.0% of data points, and have correlation r = 0.987 and mean absolute difference

2.49 ms. Thus, the automatic and manual models make predictions that agree as well as

two human transcribers.
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3.9 Discussion

Summary We have described a machine learning approach to the problem of automatic

VOT measurement which treats this task as a case of structured prediction. A function

to measure positive VOT is learned from manual measurements, using a discriminative

large-margin training procedure which aims to minimize the difference between pre-

dicted and actual VOT. The function takes as input feature maps which are specialized

for the task of VOT measurement. In a first set of experiments, we showed that the al-

gorithm achieves excellent performance for each of four datasets, when all data available

for training is used, and in particular near-ITR performance on the three dataets were ITR

data was available. In a second set of experiments, we showed that the algorithm is ro-

bust to decreasing the amount of training data, with performance remaining essentially

constant down to about 50–250 training examples (depending on the dataset). Thus, the

algorithm is adaptable to new datasets with relatively little effort. We also found that

performance generally suffers for mismatched versus matched training and test corpora.

Thus, the algorithm is learning something about the particular type of speech and mea-

suring criteria used for each dataset.

Our algorithm generally outperforms previous work where automatic and manual

VOT measurements are compared, with the caveat that precise comparison is difficult in

some cases because of differences in the datasets and experimental setups used. There

are several points of difference between our algorithm and previous work which may

help explain our method’s better performance. In contrast to the approaches of Stouten

and van Hamme (2009), Hansen et al. (2010), and Yao (2009a), our system is trainable

(rather than using a fixed set of rules), and thus can adapt to particular datasets and

measurement criteria. In addition, the features used in our algorithm were specialized

for the task of VOT measurement. This is a significant point of difference with Lin and

Wang (2011) (along with our use of a different classifier and discriminative training), who

also take a machine learning approach. Finally, our use of discriminative large-margin
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training allows us to train the measurement algorithm to minimize error on the particular

quantity of interest, VOT.

We also evaluated our algorithm by comparing two mixed-effects regression models

for the effect of several covariates on VOT in a dataset of laboratory speech: one model

fitted using automatic measurements, and the other fitted using manual measurements.

The two models were extremely similar, both in terms of fitted model parameters and

predictions on held-out data. This shows that a study of how the covariates affect VOT in

this dataset would have reached the same conclusions whether VOT measurements were

done manually, or automatically using our method.

Future directions In this chapter, we have considered word-initial English voiceless

stops, because we know that they are nearly always realized with a burst, and hence

have positive VOT. (In TIMIT, for example, 99.6% of word-initial voiceless stops for words

other than ‘to’ , which is sometimes flapped, are realized with a burst.) However, for stops

which are not word-initial or not voiceless, this is often not the case. English stops in non-

initial position are often not realized with a burst; for example, Randolph (1989) found

that in 3 corpora of read speech (including TIMIT), 31% of stops occurring as syllable co-

das were realized with a burst, compared with 97% for syllable-initial stops. Voiced stops

in English are sometimes realized with negative VOT, though estimates of how often

such “prevoicing” occurs vary greatly (e.g., 23% in Lisker and Abramson, 1964, vs. 62%

in Smith, 1978 for word-initial /b/ in isolated words; see Docherty 1992 for discussion)

The negative VOT case is even more important for languages such as European French or

Thai, where phonologically voiced stops are almost universally realized with prevoicing

(Caramazza and Yeni-Komshian, 1974; Kessinger and Blumstein, 1997; Lisker and Abram-

son, 1964). Future work will deal with both the task of measuring negative VOT, and the

task of deciding whether or not a burst occurred for a given stop. Both are necessary for

our ultimate goal: an automatic measurement system that can take an arbitrary segment
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of speech and its orthographic transcription, and output a VOT measurement (positive,

negative, or no burst) for each stop that is expected to occur.

The approach taken here combines knowledge about the cues human annotators use

to measure VOT with machine learning techniques for predicting structured output, to

tailor an algorithm to measure VOT nearly as accurately as humans, and which meets the

three criteria laid out in the introduction: accuracy, trainability, and robustness. Given

suitable features and training data, it would be straightforward to extend the approach

taken here to other widely-measured phonetic variables where the output is a sequence

of time points, such as vowel duration, segmenting a stop into different parts (closure,

burst, frication), or the duration of vowel nasalization. More generally, for most phonetic

quantities of interest (e.g., VOT, vowel formants, spectral measures for fricatives) mea-

surement is a skilled task, and expert annotators usually use several types of cues (spec-

tral, auditory, what the quantity “should” look like) in reaching a decision. The approach

taken here is to supply these cues as features to an appropriate machine learning pro-

cedure to learn how to annotate a particular quantity. Knowledge about the annotation

task is also tied to the algorithm’s structure by using a specialized cost function related

to the quantity being annotated, which is directly optimized using discriminative train-

ing. The results of the study reported in this chapter suggest that combining knowledge

about the annotation task to be performed with appropriate machine learning techniques

is a promising direction for designing algorithms to automate phonetic measurement in

general.
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CHAPTER 4

BIG BROTHER: BACKGROUND

In Chapter 1, we raised two questions about longitudinal variation: what are the dy-

namics of sound systems, and what are the sources of any observed dynamics? The re-

ality television show Big Brother, where housemates live in an isolated house for three

months, provides a fascinating opportunity to study these questions at the level of indi-

vidual speakers in a controlled setting.

The remainder of this thesis is a study of synchronic variation and longitudinal vari-

ation in a corpus of spontaneous speech from the show. This chapter reviews previous

work; the next describes the show, the corpus, and the datasets of phonetic measurements

for five variables: voice onset time (VOT), coronal stop deletion (CSD), and formants for

three vowels. In Chapters 6 and 7, we build models of synchronic and longitudinal vari-

ation for each variable.

In this chapter, we first briefly discuss previous studies that use reality TV data for

linguistic research, or investigate phonetic and phonological variation in spontaneous

speech corpora (Sec. 4.1–4.2). We then review previous work on longitudinal phonetic

and phonological variation during adulthood (Sec. 4.3), and on factors conditioning vari-

ation in each of the five variables (Sec. 4.4).

4.1 Reality television as linguistic data

One strand of linguistic research using reality TV can be characterized as discourse analy-

sis or pragmatics: data from reality TV are used to examine how language use contributes

to meaning in social interaction, and how the situational context of a linguistic utterance

affects its meaning. For example, Thornborrow and Morris (2004) study ‘gossip talk’ on a

season of Big Brother, and argue that housemates talk strategically both to form alliances

with other housemates, and to manage how they are seen by the viewing public. Wahl
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(2010) examines African performances of California ‘dude style’ in Big Brother Africa 3.

Poulios (2009) analyzes the construction of age identity in interaction on a Greek reality

TV show, using conversational analysis. Other work makes use of the adversarial interac-

tions common on reality TV, for example how impoliteness is expressed on Dragon’s Den

(Lorenzo-Dus, 2009), or how parents on Honey We’re Killing the Kids respond to criticism

from nutrition experts (Gordon, 2011). Finally, examples from reality TV can be used as

part of a broader argument about pragmatics or discourse (e.g., Auer, 2005, 2010).

Studies in the second strand use data from a particular show to address linguistic

questions that are well-aligned with the show’s structure. For example, Sankoff (2004)

uses data from the “Up” series of documentaries, in which the same British speakers

are revisited every seven years from childhood on, to study longitudinal variation in

individuals over the lifespan.1 Bergmann (2006) uses speech from German Big Brother

in a study of regional variation in German intonation. Here, Big Brother is a useful source

of data because housemates come from diverse dialect regions. Cramer (2010) analyzes

speech from characters on Southern Belles: Louisville as part of a study of the production

of regional identity in Louisville, Kentucky. Data from the most prototypically-Louisville

speaker is used as input for a focus group of Louisville residents on regional identity,

taking advantage of the show’s explicit focus on local identity.

Unsurprisingly, most studies of language on reality TV are in the first strand: reality

TV is about performance and intense social interactions, making it a gold mine for study-

ing topics like emotional speech, pragmatic meaning, or (im)politeness. The dramatic

nature of reality TV also makes it suspect, a priori, as a convenient source of spontaneous

speech data for linguistic research more generally. Because contestants are ultimately

performing, their speech could be quite different from everyday conversational speech,

raising similar concerns about ecological validity as when other types of media speech

1. This study is discussed further in Sec. 4.3.1.2.
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(such as broadcast speech) are used as linguistic data.2 One contribution of the current

study is to add another example showing that reality TV speech can be usefully used as a

valid source of spontaneous speech data. There is no glaring evidence for important dif-

ferences between our corpus and previous work on spontaneous speech for the variables

we examine. Along with other studies in the second strand, the current study suggests

that reality TV shows can be treated as “natural experiments” with ecological validity,

which provide unique opportunities for asking linguistic questions related to the struc-

ture of the show, and which often would be difficult to ask in real life.

4.2 Phonetic and phonological variation in spontaneous speech

corpora

Broadly speaking, empirical work on phonetics and phonological phenomena is charac-

terized by two dimensions corresponding to the type of speech analyzed. The researcher

can use speech elicited in a laboratory or other controlled setting, or in a non-laboratory

setting; the speech can be either planned (isolated words, read passages) or spontaneous.

These dimensions correspond to four types of speech data (laboratory/planned, etc.), all

of which have been examined in some studies. The vast majority of empirical work on

phonetics and phonology has used planned laboratory speech. A smaller strand has used

corpora of spontaneous non-laboratory speech, such as the Buckeye Corpus (American

English; Pitt et al., 2007), the Corpus of Spoken Dutch (Oostdijk, 2000), or a custom-built

corpus (most sociolinguistic studies). These two categories, planned laboratory speech

and spontaneous non-laboratory speech, are often what is meant when “laboratory” and

“corpus” approaches to studying sound systems are contrasted.3 While there are impor-

2. See Tagliamonte and Roberts (2005) for a useful discussion of the benefits and risks of mining televi-
sion shows for linguistic data.

3. Note that the datasets used in “corpus” studies, such as the Big Brother corpus, do not necessarily
satisfy the conditions (i.e., representativeness, balance) implied by the term in corpus linguistics.
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tant exceptions that fall into the remaining two categories (laboratory/non-laboratory,

spontaneous/planned), we adopt this shorthand as well.4

The pros and cons of laboratory and corpus studies are the same as for controlled ex-

periments and observational studies in any field. There is a tradeoff between certainty

about the conclusions of the study (what effect does a factor have, when all other fac-

tors are held constant?), versus their generalizability to other datasets. As Xu (2010: 334)

puts it, the choice is “to maximize ecological validity or to maximize the level of control.”

The merits of each type of study for investigating phonetics and phonology have been

extensively discussed (e.g., Beckman, 1997; Cole and Hasegawa-Johnson, 2012; Rischel,

1992; Xu, 2010). We believe that both approaches are ultimately essential for a full un-

derstanding of phonetic and phonological variation in particular. From this perspective,

more studies of phonetic and phonological variation in spontaneous speech corpora are

needed, simply because the majority of previous studies are laboratory experiments.

Previous work on variation in spontaneous speech corpora falls into two strands,

roughly corresponding to corpus linguistics and sociolinguistics.5 The main difference

is whether the object of study is primarily phonetic and phonological phenomena in in-

dividual speakers, or language variation and change in speech communities.

The first strand consists of a small but growing body of studies, reviewed in part by

Ernestus and Baayen (2011) and Cole and Hasegawa-Johnson (2012). For example, two

of our variables have been examined in the Buckeye Corpus: coronal stop deletion and

VOT (Raymond et al., 2006; Yao, 2009b). Some examples of questions addressed by this

type of study are: to what extent do phonological phenomena traditionally described as

categorical, like Dutch voicing assimilation or English nasal place assimilation, occur in

4. A non-laboratory/planned example is TIMIT (see Sec. 3.4.1) A laboratory/spontaneous example is the
HCRC Map Task Corpus of dialogues between speakers completing a shared task in a laboratory setting
(Anderson et al., 1991).

5. Kendall (2011) provides a very useful discussion of the relationship between corpus linguistics and
sociolinguistics, and discusses other work addressing the two. However, phonetic and phonological vari-
ation are mostly not discussed, since corpus linguistics as a field has tended to focus on text rather than
speech corpora.
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spontaneous speech (Dilley and Pitt, 2007; Ernestus et al., 2006)? What are the factors

affecting how frequently segments are reduced in continuous speech, and what do ob-

served patterns of segmental reduction imply about speech production (Bell et al., 2009)?

The questions addressed typically focus on the structure of aspects of speakers’ phonetics

or phonology, and less on how phonetic and phonological variables vary across speech

communities, or change over time.

The second, much larger strand is sociolinguistics, which beginning with Labov’s pio-

neering study on Martha’s Vineyard (Labov, 1963) has primarily examined phonetic and

phonological variation. Sociolinguistic studies analyze collections of spontaneous speech,

elicited in sociolinguistic interviews, tape-recorded conversations between friends, and

other settings. These collections are spontaneous speech corpora, though with significant

differences from the databases which are usually understood by the term: they tend not

to be publicly available and are designed for sociolinguistic investigation of a particular

community, rather than speech and language technology applications. A typical corpus

includes a stratified sample of speakers with respect to various social categories (e.g., sex,

class, or locally-important variables). Studies in this strand focus on variation in partic-

ular phonological variables from the perspective of understanding variation and change

in speech communities, and less on speakers’ phonetic or phonological knowledge about

the variable per se. For example, a study of fronting of the GOOSE vowel in a particular

English-speaking community (see Sec. 4.4.3.1) might address what phonological environ-

ments promote fronting, which social groups front more often than others, and whether

the structured variation present in the community is stable or part of an ongoing change.

A growing body of work, which largely falls under the label ‘sociophonetics’, com-

bines these strands: a particular phonetic or phonological variable is investigated both in

its own right, and also to address variation and change in that variable in a given com-

munity, using a corpus which allows both types of investigation (e.g., Hay and Sudbury,

2005; Keune et al., 2005; Raymond et al., 2006). The current study falls into this category.
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For VOT and CSD in particular, we are both able to contribute to a substantial existing

literature (of laboratory studies for VOT, and sociolinguistic studies for CSD) on the struc-

ture of synchronic variation, and examine the dynamics of each variable in the house.

4.3 Longitudinal variation in adulthood

Recall the questions to be addressed by building dynamic models for the Big Brother

data: what time dependence do variables show within individual housemates, and what

are the sources of any observed dynamics? The literature on longitudinal variation in

individuals more generally has addressed three closely related questions:

1. What are the dynamics of phonetic and phonological variables in individuals dur-

ing adulthood?

2. How and why do individuals differ in the dynamics of particular variables?

3. How and why do variables differ in their dynamics within individuals?

Two types of previous work address these questions: long-term studies examine indi-

viduals on a timescale of years, and short-term studies on a timescale of minutes to days.

We review long-term and short-term studies of phonetic and phonological variables, then

discuss proposals for the link between short-term and long-term change in individuals,

and how the current medium-term study addresses questions raised by the short-term and

long-term literatures.

4.3.1 Long-term studies

Individuals acquire their first language during childhood, and continue to refine aspects

of their linguistic system through adolescence. The traditional view is that an individual’s

linguistic knowledge is largely fixed following adolescence.6 This assumption underlies

6. For example, from a standard textbook: “For the stages of life beyond young adulthood, our best
evidence indicates that once the features of the sociolect are established in the speech of young adults,
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the famous apparent time construct—that a variable’s diachronic development in a speech

community can be read off from its distribution among adults of different ages—which

has been widely used since its introduction by Labov (1963, 1966) to study changes in

progress (Bailey et al., 1991). However, it has always been known that post-adolescent

stability is only an approximation, and a significant body of studies addresses the plastic-

ity of speakers’ linguistic systems during adulthood. This literature can be divided into

two broad categories, depending on whether the individuals under study have remained

in the same speech community (panel studies), or have moved between speech communi-

ties (dialect change studies).7

In the first type of study, a fixed group of speakers in a speech community (the panel) is

studied at several time points. Panel studies are complementary to trend studies, where a

different group of speakers is studied at each time point. Trend and panel studies together

are sometimes called real-time studies in sociolinguistics (in contrast to apparent-time).

The two types of studies are reviewed by Sankoff (2005, 2006, 2012).8 In studies of dialect

change, acquisition, or shift, a group of individuals is studied who have moved between

speech communities where different dialects are spoken. We call this the “dialect change

literature” for simplicity; work in English is reviewed by Siegel (2010).

For logistical reasons, it is very difficult to study individuals at several points in time.

under normal circumstances those features remain relatively stable for the rest of their lives. Even when
linguistic changes take root in the speech of younger people in the same community, the older people
usually remain impervious to it, or nearly so” (Chambers, 2003: 197).

7. We will not discuss a third relevant literature, on “vocal aging”: changes in speakers’ phonetic pa-
rameters due to the physiological effects of aging (see e.g., references in Reubold et al., 2010). Though
potentially very relevant when considering change in individuals over many years (e.g., Harrington et al.’s
study of Queen Elizabeth II over 50 years, discussed below), no vocal aging effects are expected on the
timescale of Big Brother.

8. Note that Sankoff does not explicitly state that speakers in a panel study must remain within the
same community, and “panel studies” could be taken more broadly to include studies of mobile speakers
as well. However, the studies discussed by Sankoff (and in the real-time sociolinguistic literature more
generally) largely consider speakers who remain in the same speech community, since real-time studies
in this literature are of interest primarily for studying variation and change in a given speech community,
the questions which they can address being complementary to those which can be asked in apparent-time
studies. We use “panel studies” to refer to studies of speakers who stay in the same speech community, for
convenience.
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Accordingly, there are many more trend studies than panel studies, and most studies in

the dialect change literature consider speakers at a single time point in a second-dialect

(D2) environment and infer change relative to their native dialect (D1). Nonetheless, a

sizable literature has developed on change in different aspects of individuals’ linguistic

systems over time. We restrict our review to studies that are most relevant to under-

standing the dynamics of phonetic variables within speakers on Big Brother, all of whom

are past adolescence. With a few exceptions of unusual relevance (e.g., a study of accent

change in British university students), we only consider studies of phonetic or phonolog-

ical variables, in post-adolescent speakers, where speakers are measured at several points

in time.

4.3.1.1 Panel studies

Montreal The most extensive panel study to date followed 62 Montreal French speak-

ers over 24 years. 120 speakers were recorded in 1973, stratified by age, sex, and class

(Sankoff and Sankoff, 1973). In 1984, sixty of these speakers were re-recorded, along with

12 younger speakers (Thibault et al., 1990). In 1995, 12 of the original speakers and two

of the speakers added in 1984 were re-recorded (Vincent et al., 1995). The dynamics of

many syntactic, morphological, and lexical variables have been examined for individuals

in this panel (Blondeau, 2001, 2006; Blondeau et al., 2002; Daveluy, 1988; Dubois, 1992;

Labov and Auger, 1993; Lessard, 1989; Thibault, 1991; Thibault and Daveluy, 1989; Wag-

ner and Sankoff, 2011), in addition to two types of phonological variable.

Two studies examine whether individuals changed their realizations (formant fre-

quencies) of vowels that are changing at the community level. Yaeger-Dror (1994) shows

that some change occurs for most speakers, but it is not clear in which vowels change

occurs, or whether it is in the direction of community change or not (due to how results

are reported). MacKenzie and Sankoff (2010) find a mixture of stability and change for

particular vowels for particular speakers, but the changes observed in individuals often
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do not line up with the direction of change in the community; they conclude that their

vexing results are likely due to small sample size for most vowel/speaker pairs.

A clearer picture emerges for a second variable, the realization of /r/ as apical [r] or

dorsal [R], which has been examined in several trend and panel studies (Blondeau et al.,

2002; Sankoff and Blondeau, 2007, 2010; Sankoff et al., 2001). The pronunciation of /r/

began shifting from [r] to [R] in Montreal between 1950 and 1970, at the community level.9

A central question addressed in these studies is whether and how individuals change, in

the midst of this community change.

Sankoff and Blondeau (2007) combine trend and panel components to compare the

realization of [R] in 1973 and 1984, both within individuals and at the community level.

They examine data from a panel of 32 speakers recorded at both time points and stratified

by class, age, and gender, as well as two groups of 32 speakers, one from each time point,

with demographics matched to the panel as closely as possible. Community use of [R]

increased from 63.8% to 77.8% from 1973 to 1984, continuing the long-standing trend.

At the level of individuals, the picture was more complicated. Each speaker at a given

time point is classified as an [r] speaker (<17% [R]), an [R] speaker (>84% [R]), or a vari-

able speaker.10 Of 12 speakers who were [r] speakers in 1973, 10 showed no change by

1984, while two speakers became variable. All 10 speakers who were [R] speakers in 1973

remained [R] speakers in 1984. Of the remaining 10 speakers who were variable in 1973,

three showed no significant change in their rate of [R] usage by 1984, and seven became

[R] speakers. As is often observed in cases of change in progress, women were leading:

of the 10 most advanced speakers ([R] users in both years), eight were women; of the 10

least advanced speakers ([r] users in both years), seven were men. However, there were

no clear gender differences in which speakers were variable, or which speakers changed

between the two timepoints. The overall picture is of change in the community, but rel-

9. A number of other surface realizations of /r/ also occur. [r] and [R] are the most common, and Sankoff
et al. focus on variation between them.

10. It is not clear why this range in particular is chosen.
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ative stability in the majority of individuals, with a minority showing significant change

in the direction of the community change. Variable users seem to be particularly suscep-

tible to change: only 16% of [r] users in 1973 became variable users by 1984, while 70% of

variable users in 1973 became [R] users by 1984.

Queen Elizabeth II The most extensive longitudinal studies of an individual (panel

of one speaker) have been conducted by Harrington and colleagues on Christmas Day

broadcasts given by Queen Elizabeth II between 1952 and 2002, examining change in

vowel formants and fundamental frequency. As “perhaps the only acoustically high-

quality annual recordings of speech data from the same person over a fifty-year period,”

these broadcasts present a remarkable opportunity to study the plasticity of an individ-

ual’s speech during adulthood (Harrington, 2007: 127).

The formants of many of the queen’s vowels have changed significantly over this time

period, both for monophthongs and diphthongs (Harrington et al., 2000a,b, 2005). The

changes have generally had the effect of moving the queen away from a traditional upper-

class Received Pronunciation (RP) accent, and towards a “more modern, less aristocratic

form of RP” (Harrington, 2007: 128) Most strikingly, for several vowels which are ex-

amined in detail, changes in the queen’s pronunciation parallel change occurring at the

community level in RP (Harrington, 2006, 2007).11 The queen’s vowel space has also ex-

panded in F1, with low vowels lowering and high vowels raising. Some (though far from

all) of the change observed in vowel qualities can be attributed to vocal aging: pitch and

F1 (across all vowels) decrease substantially over the fifty-year period, a pattern generally

consistent with the vocal aging literature (Harrington et al., 2007; Reubold et al., 2010).

Scandinavia In their large real-time study of pronunciation in Copenhagen, Brink and

Lund (1975) “examined recordings of several Danish speakers over many decades, in one

case with a 50-year interval, and found all speakers’ phonologies to be extremely stable”

11. Fronting of GOOSE, lowering and backing of TRAP, and tensing of final /I/ in words such as “happy.”
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(Sankoff, 2005: 1004).12 In a second Danish panel study, Gregersen et al. (2009) examine

the short (æ) variable, by 43 speakers in Copenhagen and Næstved, a nearby town. The

variable can be realized as [æ] (standard) or [E] (socially and regionally marked). Three

quarters of speakers show no change between the two timepoints, and of the remaining

quarter, some show change in each direction (lower or higher %[E]).

Nahkola and Saanilahti (2004) examine recordings from 1986 and 1996 of 24 speak-

ers in a Finnish town (Virrat), and consider 14 phonological, morphological, and mor-

phophonological variables. Their broad conclusion is that if a variable is acquired as

categorical or near-categorical, it is unlikely to change over the lifespan; if it is acquired

as variable, change is possible.13 With regard to the stability of variables within the indi-

vidual, 39% of all variables within a given speaker change by at least 10% between 1986

and 1996, and in only a few cases does a variable’s usage change “radically” between the

two years. Nahkola and Saanilahti acknowledge the arbitrariness of their 10% cutoff, and

raise an important point: it is not currently possible to say how much of a change between

the two corpora represents a “truly relevant” change, because we do not know how much

an individual’s usage of a variable is expected to fluctuate from day to day (p. 90). This

observation is a key motivation for studying trajectories of variation in Big Brother, and

we return to it below.

As part of a combined trend and panel study of change in the consonantal variable

(d) in another Finnish town (Hanhijoki), Kurki (2003) examines (d)’s usage by 11 speak-

ers at two time points 10 years apart. Nine speakers do not change, while two show

“rather great” change in the opposite direction of the community change. However, no

significance tests are given.

Other studies Bowie (2005) examines 13 phonological variables from religious addresses

12. Unfortunately this work is in Danish, so I am unable to expand on Sankoff’s summary.

13. Because all results are reported in terms of groups of speakers born in similar years, it is not possible
to say much more about change within individuals.

71



by five church elders in Utah over several decades: four speakers at two timepoints 20

years apart, and one speaker at three timepoints over 40 years. For 10 variables, no signif-

icant change is found for any speakers. For three variables, some speakers show signifi-

cant changes, but differ in the direction of change. Bowie concludes there is some support

for pronunciation change during adulthood.14

As part of a larger trend study of change in Received Pronunciation, Bauer (1985)

briefly examines productions of three vowels by the same three RP speakers, at two time

points approximately 20 years apart, reading a short passage. For all speakers F1 and

F2 have changed for each vowel, in some cases in the direction of ongoing community

change. However, no tests of significance are given, and Bauer notes that vocal aging

may be responsible for some of the observed change (overall lowering of F1).

4.3.1.2 Dialect change studies

Saxon migrants A natural setting for studying dialect change is internal migration,

where groups of speakers move from one dialect region to another in a single country,

often in search of work. A remarkable study followed 56 speakers (aged 12–52) of Upper

Saxonian Vernacular (USV), a highly stigmatized German dialect spoken in Saxony (for-

mer East Germany), who moved to two locations in the former West Germany following

German reunification (Barden and Großkopf, 1998). Speakers were recorded eight times

over two years. Reporting on a subset of this study, Auer et al. (1998) examine 14 phono-

logical variables which are characteristic of USV at three time points, focusing on how

much speakers decrease their use of the USV variant relative to standard variants (from

Standard German, or the dialect of their new location). They test whether five “objective”

and five “subjective” criteria for a variable’s salience (see Sec. 4.3.1.3) predict the relative

14. Relatively few tokens per variable (30 or fewer) are considered at each timepoint, raising the possibil-
ity that some changes which did occur may have gone undetected (i.e., Type II error: see Sec. 4.3.1.3).
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amount of loss of different USV variables.15

The overall pattern is decreased use of USV forms, for nearly all variables. Salience

turns out to be helpful only for continuous variables (and not dichotomous variables),

which can be realized as intermediate (between USV and the standard) or strong (USV)

forms. Salience predicts the amount of decrease of intermediate forms only. Both subjec-

tive and objective criteria matter, but subjective criteria dominate.

The results are not broken down by individuals, so we cannot say whether some

speakers are much more stable than others (as observed for Montreal /r/). However,

the speaker’s social network and attitude play an important role. Speakers who formed

no strong social ties in West Germany and whose attitude was oriented towards Saxony

(and against West Germany) behaved differently from other migrants. The former actu-

ally increased their usage of USV forms, bucking the general trend, and mirroring their

attitude towards their situation (Barden and Großkopf, 1998, summarized in Auer and

Hinskens, 2005).

English university students University campuses, where students from many differ-

ent dialect regions come into contact, form another natural setting for studying dialect

change. Evans and Iverson (2007) examine the dynamics of vowel perception and pro-

duction for 23 students (aged 17–18), whose home dialects were a variety of Northern

English (NEng). Speakers were recorded at four time points over two years, beginning

before their first year of university. Of interest was how the northern students’ vowels

shifted in response to contact with the prestige dialect, Standard Southern British English

(SSBE), which was expected to be the majority dialect at their university.

We discuss only the production results. At each timepoint, speakers produced words

corresponding to 10 lexical sets (“beat”, “boot”) in carrier sentences. The words contained

15. For example: variables involving a phonemic distinction are more salient than those involving sub-
phonemic differences (objective); the more aware lay speakers are of a variable, the more salient it is (sub-
jective).
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eight distinct vowels in NEng, versus nine in SSBE, due to the FOOT/STRUT merger in

NEng (see Sec. 4.4.3.1). F1, F2, and duration were analyzed for FOOT, STRUT, and BATH,

to test for change in these vowels’ qualities over two years. These three vowels corre-

spond to the most socially-salient differences between NEng and SSBE: the merger of

FOOT and STRUT, and the pronunciation of the BATH lexical set.16 Speakers changed F1

and F2 of FOOT and STRUT over time towards a more centralized pronunciation. One in-

terpretation is that they maintain the merger between these lexical sets, but the realization

of the merged set shifts, from a point similar to SSBE FOOT to intermediate between SSBE

FOOT and STRUT. Speakers also change F1 and F2 of BATH over time, towards PALM, as

expected if they are shifting towards the SSBE pattern (BATH=PALM). However, there is

no change in duration, even though BATH is significantly longer in SSBE than in NEng.

The other vowels are not explicitly tested for change, but visually seem stable at the

group level.17 This includes several vowels whose realization varies significantly among

British dialects (such as GOOSE; see Sec. 4.4.3.1), suggesting that speakers are not simply

moving their entire vowel space towards SSBE. Individual results are not explicitly re-

ported, but some differences between subjects are noted: the realization of FOOT/STRUT

changed for “almost all” subjects, while “some” changed their realization of BATH.

Brazilian/English bilingual A pioneering study by Sancier and Fowler (1997) does not

concern dialect change per se, but the effect of a bilingual speaker’s ambient language

on her speech production in both languages. A 27 year-old Portuguese/English bilingual

was recorded reading a list of sentences in each language, containing words beginning

with initial voiceless stops, at three time points: during a trip to Brazil, and in the US

before and after the trip. In each case, she had been in the country for several months prior

to recording. Overall, the VOT of her Portuguese stops are shorter than for her English

16. For northern speakers BATH is pronounced like TRAP, and for southern speakers like PALM.

17. The other vowels are not considered “to avoid multiple statistical tests” (3818), given that the authors’
previous work suggests that only FOOT, STRUT, and BATH are likely to change (Evans and Iverson, 2004).
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stops, whether she is in the US or Brazil, as expected given the different timing patterns

of stops in these languages (see Sec. 3.8). However, she produces stops in both languages

with shorter VOTs in Brazil (where the ambient language has shorter VOTs) than in the

US (where the ambient language has longer VOTs). Sancier and Fowler conclude that the

speaker shows “gestural drift”: the timing of her articulatory gestures change such that

her VOTs shift towards the ambient language of the community.

North Americans abroad In one of the largest studies of second dialect acquisition,

Foreman (2003) examines 34 Americans who moved to Australia at different ages, and

have lived there for different amounts of time. Six phonological variables are considered

which differ substantially between Australian English and American English. Longitu-

dinal data is available for six speakers. Four speakers, all of whom had lived in Aus-

tralia since the 1970s, show no significant changes for the six variables between recordings

taken in 1989 and 1999. For two other speakers, five recordings are available from 1974–

2001, beginning six months after their arrival in Australia. After 27 years, the speakers

use 2.3% and 20.6% Australian variants, pooling across all variables. There is significant

variation in how much different variables change, for both speakers.

In an early study of dialect change, Shockey (1984) examines flapping of intervocalic

stops by four Americans who have moved to England. She examines herself at two time

points, six months and 3.5 years after arriving in England. After six months she still

uses the flap allophone categorically in flapping environments; after 3.5 years she uses

it variably, but still more frequently than the other three speakers, who have lived in

England 8–27 years.

A number of other dialect change studies examine Americans and Canadians who

have moved to other English-speaking countries, but are outside the scope of this re-

view (phonetic and phonological variables, post-adolescents, multiple recording times)

(Chambers, 1992; Munro et al., 1999; Tagliamonte and Molfenter, 2007; Trudgill, 1986).
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Media In a well-known early study, Trudgill (1983) examines the use of two consonantal

variables in songs by the Beatles and the Rolling Stones between 1963 and 1969. Each vari-

able has British and American variants. There is a steady decrease in the use of American

variants by both bands during this period, which is attributed to the rising dominance of

British artists in rock music. Unfortunately (for our purposes), the results are not broken

down by individual singers. Also, it is not clear whether Trudgill views the decreases in

American forms as dialect change (which reflects the singers’ accents outside of perfor-

mances), or style shifting.

In a remarkable lesser-known study, Prince (1987, 1988) examines over 10000 tokens of

five vocalic variables in performances by the Yiddish singer Sarah Gorby over 40 years.

Each variable differs between Gorby’s stigmatized native dialect, Bessarabian Yiddish

(BesY), and the prestige dialect, Standard Yiddish (StY). The tokens are grouped into three

time periods, and logistic regression analyses are performed to assess whether Gorby’s

use of each variable changed. Gorby shows a mixture of stability and change. About

one-half of tokens are discarded at the outset because they are from words where only the

StY variant is used, suggesting stability.18 Two of the variables show no change. In at

least two of the other three variables, the use of StY forms increases markedly over time.

The variables’ dynamics are affected by characteristics of the host morpheme: open-class

words change less than closed-class words (Prince attributes this to less attention paid

during production of closed-class words); words with different parts of speech and free

versus bound morphemes also have different dynamics. Prince argues the mechanism

of change is long-term accommodation to StY, and that some of the huge differences in

dynamics between variables can be attributed to social factors, such as differing levels of

stigmatization.

Sankoff (2004) examines two subjects of Michael Apted’s Up series of documentaries,

18. For some words (which are included in the analysis) the BesY variant is categorically used, but how
many is not indicated.
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which has revisited a group of 14 British children every seven years from age seven on.

Both speakers are from Northern England, and each eventually moves between several

dialect regions and experiences extraordinary social mobility (one upwards, the other

downwards). Sankoff examines their productions from ages 7–35 (five timepoints) of

BATH and STRUT, the two vowels found by Evans and Iverson to change for North-

ern English students after beginning university. Both speakers show “some significant

phonetic, and possibly phonemic, alternations to their speech after adolescence” (136);

Sankoff views their malleability as exceptional, possibly due to their highly unusual per-

sonal histories.

4.3.1.3 Discussion

The long-term literature sheds significant light on the three questions raised above.

Stability and change What are the dynamics of phonetic and phonological variables

in individuals during adulthood? Recall that the traditional assumption is that there is

no change during adulthood. The studies reviewed above suggest that adults who stay

within a speech community, stability is the default, with a minority showing significant

change, often in the direction of community change or the standard language. This pic-

ture generally holds for change within the individual for morphological and syntactic

variables as well (Sankoff, 2012). The picture is similarly mixed for dialect change stud-

ies: when individual results have been reported, speakers show highly variable amounts

of change for the same variable. For both phonetic/phonological and other types of vari-

ables, huge interspeaker variability is the norm (Siegel, 2010: 51).

The prevalence of stability for phonetic/phonological variables in the studies reviewed

is striking. In every panel study where individual results are reported for more than three

speakers, the majority of cases show no change: 66% of speakers for Montreal /r/, 75%

of speakers for Danish (ae), 61% of cases in Virrat, 88% of cases in Utah.
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There is an important distinction between stability and change in interpreting the re-

sults of longitudinal studies. It is not surprising to find that an individual’s use of a vari-

able has changed between two recordings taken years apart, a priori. When the recordings

are of spontaneous speech (as is usually the case), the variable may be used at different

rates in the two recordings because of differences in speaking style, the particular lexi-

cal items used, or many other factors which cannot be controlled for, given the limited

amount of speech available from each time point. Differences may result from the fact

that the two recordings are conducted with different methodologies or by different field-

workers (Bailey and Tillery, 1999; Trudgill, 1988). There is also the possibility raised by

Nahkola and Saanilahti that speakers vary randomly from day to day, in which case an

observed difference between two time points may simply be noise. Given all the possible

reasons for observing change, what is surprising is not observing change.19

However, there is a crucial caveat to interpreting findings of stability, which is that

they have never (to our knowledge) been subjected to statistical tests to assess Type II

error: concluding there was no change when in fact change occurred.20 Type II error

depends on a number of factors, most importantly (for our purposes) sample size, and

is assessed by a power analysis. A worrying example suggests that Type II error (β)

may be a significant problem in long-term studies. We calculated power (1 − β) for the

observed difference in proportion of [R] usage between 1971 and 1984 for the three “sta-

bly variable” speakers in the Montreal study (those for whom Type I error α > 0.05, in

Sankoff and Blondeau, 2007), by applying a two-sided sample proportion test to the data

in Sankoff and Blondeau’s Table 12. Speakers mostly had between 100 and 120 tokens per

19. This is the reverse of the situation in experimental studies, where a null result cannot be easily in-
terpreted (because it has many possible causes), while a positive result is surprising. Because findings of
stability are surprising, we disagree with Bowie (2005: 50), who finds them “not terribly interesting... a
finding, but a finding of a lack of a finding.”

20. More precisely, concluding that the null hypothesis of no change cannot be rejected, when in fact it is
false. In a closely related context, Hinskens (1996: 386) discusses Type II error in an apparent-time study of
regional dialect leveling: the risk of concluding a feature is not leveling when in fact it is (but the effect is
too small to detect).
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timepoint (p. 568); to be conservative (higher power), we assumed 120 uniformly. Power

for the three speakers was 0.12, 0.19, and 0.28, implying a Type II error of 0.72–0.88, far

higher than standard cutoffs (0.2–0.25). Thus, if a given speaker had changed their [R]

usage by the empirically observed amount, there would be a 72–88% chance of conclud-

ing they had not—which is what was concluded. Thus, for these speakers we cannot

rule out the possibility that they did not change (because α > 0.05) or the possibility that

they did change (because β > 0.2). This example suggests power analyses are crucial for

future long-term studies—which generally have smaller sample sizes per timepoint than

the Montreal study—and that existing findings of stability merit further scrutiny. How-

ever, for our purposes we will continue to interpret the long-term literature as showing a

remarkable degree of stability, with the caveat that some observed stability may in fact be

changes which were too small to detect.

Despite the prevalence of stability, it is clear that some speakers show considerable

change during adulthood. Most dialect change studies show many individuals changing

at least to some extent towards the D2 variant in each variable studied (Siegel, 2010: Ch.

2).21 For panel studies, the clearest cases are those with a convincing interpretation for

the observed pattern of change (since these are least likely to be due to noise): Queen

Elizabeth II’s vowel space has undergone extraordinary change in adulthood, largely to-

wards middle-class RP; Sancier & Fowler’s bilingual produces stops with VOTs shifted

towards the norm in her ambient language; Montreal French speakers who change their

use of /r/ do so almost exclusively in the direction of community change; Sarah Gorby

shifted largely towards increased use of standard Yiddish forms.

Interspeaker variation Relatively few panel studies have discussed causes for inters-

peaker differences in how much a variable changes, probably because the small number

21. A notable exception is Stanford’s studies of dialects spoken by different Sui clans, where almost no
change is observed for any variable for women who marry into different clans, apparently due to an ex-
tremely strong link between dialect features and clan identity (Stanford, 2007, 2008).
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of speakers in most studies makes generalization difficult. Naro and Scherre (2003) and

Wagner (2008) found that speakers with more education (during the study period) were

more likely to change, for phonological and morphological variables where one variant

was part of the standard language and was taught in schools. In Montreal, Blondeau

et al. (2002) argue that increased use of [R] reflects upward social mobility, and Wagner

and Sankoff (2011) find that upper-class speakers increase their use of the inflected future

despite ongoing community change away from this form, perhaps because it has become

prestigious. Educational level and social mobility could make change more likely either

because they entail more exposure to the standard variant, or because the speaker comes

to identify more with standard variant users.22

There has been much more discussion of sources of individual differences in dialect

change. Siegel (2010: Chapters 4–5) summarizes the evidence for effects of age of acqui-

sition (when the speaker moved to the D2 area), length of residence, gender, occupation,

amount of interaction with D2 speakers, attitudinal factors (including motivation to learn

the D2), and social identity.23 He concludes that the most important factors are age of ac-

quisition (the expected amount of change decreases significantly following adolescence);

the amount of interaction with D2 speakers, and possibly how much the speaker identi-

fies with the D2 community (p. 120).

Intervariable variation The most important factor conditioning whether a variable is

likely to change over an individual’s lifespan is what level of linguistic structure it reflects.

There is consensus that both for static and mobile speakers, lexical or syntactic variables

are more susceptible to change than phonological and phonetic variables (Labov, 1994:

84; Sankoff, 2005; Siegel, 2010: 92).24

22. We discuss this type of ambiguity further in Sec. 4.3.3.1.

23. “... the part of a person’s self-image based on the characteristics and attitudes of the social group or
groups which that person belongs to or aspires to belong to” (106).

24. Morphological features are somewhere in between, but “more lexical” aspects of morphology may be
more malleable (Sankoff, 2005).
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Especially in dialect change studies, another important predictor of a variable’s sus-

ceptibility to change is rule complexity: how complex an adjustment the D1 learner would

need to make to her existing sound system to acquire the D2 variant. For phonetic and

phonological variables in particular, purely phonetic adjustments should be easiest to

acquire (D1 and D2 share a phoneme, but pronounce it differently), predictable phono-

logical alternations harder, and arbitrarily phonemic splits very hard. This basic idea has

been applied in many dialect change and acquisition settings to help explain which vari-

ables are more likely to be acquired, by both children and adults (e.g., Chambers, 1992;

Payne, 1976, 1980; Wells, 1973, 1982). The role of rule complexity may differ for features

that are being lost versus gained: complex rules may be hardest to acquire, but easiest to

lose (Auer et al., 1998: 168).

Salience is widely invoked in the dialect change literature: the more salient a variable,

the more likely it is to be gained (in dialect acquisition) or lost (in dialect shift). The

concept of salience dates back to Schirmunski (1929, 1930), who applied it (Auffälligkeit)

at the level of whole dialects (i.e., community-level); more recently it has been invoked

to explain the likelihood of individuals taking up or losing a particular variable (e.g.,

Auer et al., 1998; Kerswill and Williams, 2002; Trudgill, 1986, and references therein).

Intuitively, variables that are more noticeable or prominent will be more likely to change.

This hypothesis seems reasonable, since you must be able to notice a variable to change

it.25 However, exactly what makes a variable salient is highly controversial. For the

phonetic/phonological variables we will consider in Big Brother, three widely-accepted

criteria for salience are relevant:

• Greater phonetic distance: Variables with a greater phonetic distance between the old

and new variants are more salient.

• Phonemicity: Variables involved in distinguishing meaning are more salient than

25. This holds for acquiring features of a second language as well, as pointed out by Siegel (2010: 127).
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those which are not.

• Social salience: Laypeople attach meaning to the variable: they notice and comment

on it, it shows up in imitations of the dialect or in lay dialect writing, laypeople

associate it with particular demographic or regional groups, etc. Variables with

greater social salience are more susceptible to change.

Accounts of salience differ on the non-trivial questions of what phonemic distance and

phonemicty actually are, which we abstract away from here.

4.3.2 Short-term studies

Short-term studies examine a very general phenomenon: aspects of one’s speech often

shift under exposure to other people’s speech, both in conversations and in laboratory

settings. The direction and magnitude of these shifts are strongly mediated by social and

situational factors, such as gender, social dominance, and attitude towards the interlocu-

tor. We consider only shifts in the sound system, but such effects are widespread at higher

levels of representation as well (Pickering and Ferreira, 2008; Pickering and Garrod, 2004).

Individuals have been found to shift their speech along many dimensions. Most stud-

ies have considered paralinguistic parameters, such as vocal intensity, pitch, speaking

rate, or pause duration. This substantial literature is partially reviewed, from a phonetics

perspective, by Nielsen (2008) and Babel (2009). Below, we focus on the growing body of

work examining shifts in phonetic and phonological parameters, with some discussion of

work from the broader literature to provide context.

4.3.2.1 Preliminaries

Causes of short-term shifts The key theoretical issue in the short-term literature is why

individuals shift, on which there are two broad viewpoints. One is represented by Com-

munication Accommodation Theory (CAT), which considers shifts in both speech and
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non-verbal communication during social interaction (Giles et al., 1991; Shepard et al.,

2001).26 CAT proposes that individuals use language to manage social distance from

their interlocutor, by one of several accommodation strategies: convergence, for example to

gain approval or express solidarity; divergence, for example to express disapproval or em-

phasize social differences; or maintenance, for example maintaining the same speech style

despite accommodation by the interlocutor. The other viewpoint is that the shifts are

largely automatic and unconscious, the reflection of a broad human tendency towards

synchrony of actions with perception via the “perception-behavior expressway” (Bargh

and Chartrand, 1999; Chartrand and Bargh, 1999; Dijksterhuis and Bargh, 2001). How-

ever, the link between perception and action is mediated by social factors, such as those

invoked by CAT, that influence the direction and degree of shift.

We call these the social and the automatic positions. The debate will turn out to be

largely unimportant for our study of phonetic dynamics in Big Brother, but frames much

of the work reviewed below.

Terminology There is significant confusion in the literature on the meaning of terms re-

ferring to short-term shifts in speech: accommodation, convergence, divergence, and imi-

tation.27 ‘Accommodation’, ‘convergence’, and ‘divergence’ are traditionally used within

the SAT/CAT framework: accommodation is the subjective sense of adjusting how one

communicates in interaction, while convergence and divergence refer to actual shifts on

some dimension. Thus, these terms are associated with the social position. ‘Imitation’

suggests automaticity, and is traditionally used by authors taking an automatic position,

such as Bargh and colleagues. However, ‘spontaneous imitation’ refers to an influential

experimental paradigm introduced by Goldinger (1998) for eliciting short-term shifts (de-

scribed below). Although Goldinger was firmly in the automatic camp (hence ‘imitation’),

26. Developed from the earlier Speech Accommodation Theory, which considered speech only (Giles and
Powesland, 1975).

27. Even more terms exist (alignment, entrainment, resonance), but are used less frequently.
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the term has come to be used more generally. Finally, the terms ‘phonetic convergence’

and ‘phonetic imitation’ are often used to refer to the general phenomenon of short-term

shifts, particularly in phonetic/phonological variables such as VOT or vowel formants. It

is not surprising given such overlap that the different terms are increasingly used inter-

changeably. (e.g., Abrego-Collier et al., 2011; Babel, 2011). Nonetheless, the terms retain

strong connotations on the sources of observed short-term shifts, and it is worth clarifying

how we will use them.

‘Shift’ is preferred, as neutral on the causes of an observed short-term change. ‘Con-

verge(nce)’ and ‘diverge(nce)’ are used as shorthand for “shift towards/away from the

interlocutor”, with no implication of social motivations. ‘Accommodation’ is used only

when the author invokes social motivations. ‘Imitation’ and ‘spontaneous imitation’ are

used only to refer to Goldinger-like imitation paradigms, with no implication of auto-

maticity. Rather than ‘phonetic imitation’ or ‘phonetic convergence’, ‘phonetic shift’ is

used as shorthand for “shifts in phonetic or phonological parameters during short-term

interaction.” Note that this terminological clarity comes at the expense of often using dif-

ferent terms when describing the results of a study than are used by the study’s authors.

4.3.2.2 Shifts in general

In short-term studies, shifts in an individual’s speech can be measured in two ways: along

some acoustic dimension(s), or using a perceptual measure of overall similarity. Most

studies in the broader short-term literature have used acoustic measures. For example,

Natale (1975) tested whether the mean vocal intensity of subjects’ speech shifted towards

the intensity of an interlocutor in two types of interaction: dialogue with an interviewer

(21 subjects), and unstructured conversation with another subject (50 same-sex dyads).

In the first setting every subject’s vocal intensity shifted towards the interviewers; in the

second setting conversation partners converged in vocal intensity, but individual results

are not reported. More convergence obtained for subjects who scored higher on a social
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desirability scale.

The perceptual measure was first used in a seminal study by Goldinger (1998). Sim-

plifying somewhat, eight subjects were recorded reading a list of words, then heard these

words read by a set of model talkers, then performed a shadowing task (repetition of

a speech stimulus as fast as possible) on these words read by the same talkers.28 How

similar a subject’s shadowed production of a word was to its target production (by the

model talker), relative to its baseline production, was assessed by an AXB task: a panel

of (different) subjects heard the baseline (A), target (X), and shadowed (B) productions,

and decided whether A or B was “a better imitation of” X. The percentage of votes for B

is a gestalt perceptual measure of its similarity to X, which we call AXB similarity; a score

of at least 50% indicates the subject shifted the word’s pronunciation towards the target

production. By this measure, subjects consistently shifted towards the target productions.

Because subjects had no reason to consciously shift towards the target (no instructions to

do so, or social interaction), Goldinger called this behavior spontaneous imitation. Later

work extended the timescale of this effect (Goldinger, 2000). Twelve subjects performed

the baseline and training phases, then were re-recorded saying all words one week later

(without shadowing). These productions were found to have shifted towards the training

productions, as measured by AXB similarity. Individual results are not reported in either

study (1998, 2000).

Following Goldinger and other work on spontaneous imitation in laboratory settings

(Fowler et al., 2003; Namy et al., 2002), an influential study by Pardo (2006) examined

short-term shifts during social interaction. Six same-gender dyads participated in a map

task,29 and were recorded saying each landmark’s label in pre and post-task sessions. A

panel performed AXB tasks resulting in two types of similarity score: a measure of shift

28. The actual experiments involve a range of manipulations which are not relevant here.

29. In this task, two speakers separated by a divider each have a map labeled with landmarks. One
speaker (the giver) has a path on his map while the other (the receiver) does not. The task is for the receiver
to duplicate the path on his map using directions from the giver. The resulting interaction leads to many
repetitions of the landmark names by each speaker (Anderson et al., 1991).
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towards the other speaker within the conversation (for within-task items), and the persis-

tence of shifts into the post-task session (for post-task items). As measured by AXB sim-

ilarity, most subjects shifted towards each other during the task, and the shifts persisted

to some extent post-task. All subjects showed some shift during the task (Fig. 2), though

some shifted away from their partner. Pardo reports a complex interaction between a

speaker’s role and sex on the size and direction of shift, and concludes that social fac-

tors affect the degree of accommodation. However, the robustness of this interpretation

is unclear given the small number of speakers (12) relative to the number of by-speaker

variables (3).

Pardo (2009) analyzed data for six same-sex dyads from the preceding experiment, as

well as four mixed-sex pairs, for shifts in pitch and utterance duration. Shifts for both

variables were moderately predictive of AXB similarity scores, suggesting some con-

vergence in both. There was also modest evidence for shifts in speakers’ vowel spaces

towards each other, comparing formant values for pre-task and post-task vowels. For

all three variables (f0, utterance duration, vowel formants) effects of gender and talker

role are reported, but they are again hard to assess given the number of speakers con-

sidered. Pardo et al. (2010) performed a similar experiment to Pardo (2006), but with

12 same-gender dyads, and the instruction given to each speaker varied as well (one

member of each dyad was explicitly told to imitate). Convergence between speakers in

a dyad was again found, mediated by talker role, gender, and instruction. The largest

effect was of talker role (givers shifted towards receivers). Acoustic analyses were also

performed of speaking rate and vowel formants, but little evidence was found for con-

vergence. Speakers substantially varied their speaking rates during interaction, but not

towards each other.

The literature on short-term shifts in pronunciation (but where phonetic and phono-

logical variables are not examined) is growing rapidly, and we omit discussion of several

recent studies that are less relevant for our purposes, which examine pairs of nonnative
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speakers, pairs of native and nonnative speakers, and the role of phonetic talent on the

degree of shift (Kim, 2011; Lewandowski, 2012; Lewandowski and Dogil, 2010).

4.3.2.3 Shifts in phonetic and phonological variables

We now turn to short-term studies which examine phonetic/phonological variables. Our

review is limited in two ways. We do not discuss the broader sociolinguistic literature on

style shifting, where an individual’s use of a variable changes depending on the context

(interlocutor, topic, formality, attention, etc.) (Schilling-Estes, 2003). We are interested

only in cases where all factors except the interlocutor’s identity are as controlled as possi-

ble, to understand how much short-term shift occurs due to interaction alone. In addition,

we note that the literature on short-term shifts in phonetic and phonological variables is

currently a very active research area, and a number of recent studies which are less rele-

vant for our purposes are not reviewed here (Aubanel and Nguyen, 2010; Kappes et al.,

2009; Kim et al., 2011; Lawson et al., 2011; Lelong and Bailly, 2011, 2012; Michelas and

Nguyen, 2011; Nilsenová et al., 2009; Nilsenová and van Amelsvoort, 2010; Pardo et al.,

2012; van Dommelen et al., 2011).

Voice onset time Shockley et al. (2004) examined whether subphonemic detail (VOT)

would be imitated in a shadowing task. All shadowed words began with a voiceless

stop, and baseline productions of each word were produced before the task by each of

eight subjects. In one experiment the model talker’s word-initial VOTs were doubled;

in a second experiment they were not. Speakers produced longer VOTs for shadowed

productions relative to baseline productions in both experiments, but the difference was

larger in the lengthened-VOT experiment, indicating that speakers imitated lengthened

VOT. No individual results are reported.

Nielsen (2011) examined VOT imitation using a modified version of Goldinger’s paradigm.

Subjects produced a list of words beginning with /p/ or /k/, then heard a subset of
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the /p/ words produced by a model speaker with the VOTs artificially modified; they

then produced all words again. The speaker’s VOTs were lengthened in one experiment,

and shortened in a second experiment. In the first experiment, subjects’ VOTs for post-

listening productions were lengthened relative to baseline productions. Of the 27 sub-

jects, 25 increased their average VOT, some much more than others (Nielsen’s Fig. 2). In

contrast, in the second experiment, there was no significant change in between the base-

line and post-listening productions. VOT increased for 14 subjects and decreased for 11

subjects. Nielsen concludes that subjects will imitate lengthened but not shortened VOT

in voiceless stops, possibly because decreasing VOT would endanger the contrast with

voiced stops.

Abrego-Collier et al. (2011) examined VOT imitation for word-initial voiceless stops in

a task similar to Nielsen’s in overall structure (baseline, listening, post-listening), but with

a listening phase where 72 target words with lengthened VOTs were embedded in a nar-

rative about a blind date, rather than presented in isolation. Several social variables (e.g.,

subject gender, talker sexuality), as well as subject attitude towards the narrator were ex-

amined for effects on the amount of change in VOT for 48 subjects. Only attitude had a

significant effect: VOT increased for subjects who felt positively towards the narrator (to-

wards his lengthened VOTs), and decreased for subjects who felt negatively. In contrast

to Nielsen’s finding, there was no overall shift in VOT across subjects. Individual differ-

ences are not reported in the paper, but were later examined for an expanded dataset of 87

speakers. Two models were fit for each speaker’s data, one with terms indexing baseline

vs. post-listening blocks, and one without them. Comparing the two models gives a sig-

nificance value, which measures how confident we are that speakers showed any change

in VOT between blocks. VOT changed significantly (p<0.1) for 56 subjects (64%).

An additional study discussed below investigates imitation of negative VOT (Mitterer

and Ernestus, 2008).
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Vowels Imitations are of course never exact: for example, when imitating vowels in a

laboratory setting, speakers’ imitations are reliably noisy (variable across imitations) and

biased (systematic difference between imitations and the target) (e.g., Chistovich et al.,

1966; Repp and Williams, 1985). Vallabha and Tuller (2004) carefully studied the nature

of inaccuracies in imitation of self-produced vowels spread throughout the F1/F2 space,

by three speakers. Imitations were highly biased and noisy, but the exact pattern differed

greatly across speakers. However, speakers had similar distributions for the amount of

bias and noise, suggesting that they imitated with equal degrees of inaccuracy. Speakers’

imitation patterns suggest “there is additive Gaussian noise in the imitation process that

independently affects each formant” (1184). Finally, of two speakers who repeated the

experiment 14 months later, one showed significant change in imitation patterns and one

did not, suggesting that whatever factors underlie an individual’s imitation patterns can

change over time.

Delvaux and Soquet (2007) examined phonetic convergence by speakers from one

French dialect region of Belgium to a recorded speaker from a different dialect region.

Subjects performed a picture naming task, with no explicit instructions to imitate. They

named pictures alternately with the recorded speaker, thus exposing them to her speech.

Of primary interest was how speakers shifted their realization of two vowels whose

phonetic realization differs between Belgian regiolects. Shifts in three types of acoustic

parameter—duration, formant frequencies, and MFCCs—were assessed using an innova-

tive methodology: a discriminant analysis was performed to determine the subspace of

formant frequency space (for example) best differentiating speakers from the two dialect

regions (the subject’s and the recorded speaker’s); convergence was assessed by whether

within-task productions were less separable from the recorded speaker’s productions, in

this space, relative to baseline productions. In one experiment four speakers converged

to the recorded speaker, in all three types of acoustic parameter. In a second experiment,

only MFCCs and duration were analyzed. Robust convergence was observed for all sub-
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jects: across both variables, two vowels, and eight subjects, a shift towards the model

speaker occurred in 30 of 32 cases, with the two exceptions from different speakers.

Analyses of vocalic variables in Pardo (2009; et al. 2010) are discussed above.

Babel (2010) examined shifts in vowel formants in a word shadowing task, and their

conditioning by social variables. Thirty-four New Zealanders produced words containing

six vowels; they then shadowed productions of these words by Australian talkers, then

produced the words again. For each shadowed production of a word, the difference was

calculated between (1) the euclidean distance between the shadowed production’s vowel

and the target production’s vowel, in F1/F2 space, and (2) the distance between the base-

line and target productions, by the same metric; a negative difference indicated conver-

gence towards the target pronunciation. A similar score was calculated for the post-task

productions. Overall, all vowels shifted towards the target pronunciations, some much

more than others. In addition, the amount of convergence towards the Australian talker

was mediated by the subject’s attitude towards Australia (positive⇒more convergence).

Individual difference results are not explicitly reported. However, 25 of 34 subjects seem

to show overall convergence (negative average difference-in-distance scores in Babel’s

Fig. 1).

The same overall method (single-word shadowing, baseline/task/post-task) was used

by Babel (2011) to study shifts in vowel formants by 111 American English speakers to-

wards a male model talker, in one of four conditions: the talker was African American

or Caucasian, and his face was visible or not. Words contained one of five vowels (/æ/,

/A/, /i:/, /o:/, /u:/), and convergence was assessed using the same distance-in-distance

metric. Subjects converged more for low vowels (/æ/, /A/) than for non-low vowels, and

the amount of convergence varied by condition, the subject’s sex, and perceived model

talker attractiveness. Individual differences are not explicitly reported, but most speakers

seem to have shown some shift for productions of each vowel, on average, especially the

low vowels (Babel’s Figs. 4, 6, 7).
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Nielsen (2010) examined imitation of Japanese vowel devoicing. In Tokyo Japanese,

short high vowels are variably devoiced between two voiceless consonants; there is dis-

agreement over whether this is a categorical phonological (assimilation of [-voice]) or

gradient phonetic process. The experimental setup was similar to Nielsen’s VOT experi-

ment, with the listening phase consisting of words artificially modified such that all vow-

els which could be devoiced were. Gradient and categorical measures were used to deter-

mine how much/whether subjects’ productions were devoiced. Overall, subjects shifted

towards the model talker, devoicing more in post-task productions than in baseline pro-

ductions. Most individual speakers (20 of 24) showed this pattern, a few much more than

others (Nielsen’s Fig. 1).

Segmental vs. phonetic variation All studies discussed so far examined imitation of

gradient, subphonemic variation. Three other studies examined imitation of segmental

variation (the use of one categorical variant instead of another), as well as how much

contrastive variation is imitated relative to non-contrastive variation.

Mitterer and Ernestus (2008) examined imitation of categorical and gradient variation

by Dutch speakers using a word shadowing task. The categorical pattern was variation

in the phonetic realization of /r/ in Dutch. The most common realizations are alveolar [r]

and uvular [ö], and most speakers use one or the other exclusively. The gradient pattern

was VOT, which in Dutch distinguishes voiced (negative VOT) from voiceless (positive

VOT) stops. Eighteen subjects participated, both habitual [r] and habitual [ö] users. Sub-

jects shadowed non-words beginning with /r/ or a voiced stop, where /r/ was realized

as [r] or [ö], and the voiced stops with 0, 6, or 12 cycles of prevoicing. There was very

little imitation of /r/ realization: in 97.3% of cases where the subject’s habitual variant

(e.g., alveolar) did not match the target realization (e.g., uvular), the habitual variant was

used in the shadowed production. The 2.7% of cases of imitation were concentrated in

two subjects; all others almost never imitated. Imitation for voiced stop stimuli was as-
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sessed using the duration of prevoicing in the shadowed production. Subjects produced

longer prevoicing when shadowing stimuli with prevoicing (6 or 12 cycles), compared to

those without prevoicing, but did not differ in the duration of prevoicing when shad-

owing stimuli with 6 or 12 cycles of prevoicing. (Individual results are not reported

for the stop stimuli.) Thus, “the phonologically relevant difference between presence

and absence of prevoicing was imitated, while the phonologically irrelevant amount of

prevoicing was not” (173). Assuming that speakers treat different realizations of /r/ as

equivalent, its realization is also “phonologically-irrelevant.” That speakers did not imi-

tate non-contrastive aspects of phonetic realization supports Mitterer and Ernestus’s view

that “the link between speech perception and production is phonological and abstract”

(168).

Brouwer et al. (2010) investigated how listeners imitate reduced speech. Sixteen sub-

jects shadowed canonical and reduced pronunciations of words excised from a corpus of

spontaneous spoken Dutch; six subjects were excluded based on poor performance. Imi-

tation was assessed using the duration of the shadowed response and how its constituent

segments were realized (the same as or differently from the target’s realization). Shad-

owed productions were longer than target productions overall, with a larger difference

for reduced targets. Subjects rarely shadowed canonical segments as reduced; that is,

the shadowed production was rarely more reduced than the target. However, they often

(68%) shadowed reduced segments as canonical. Thus, canonical forms were imitated

more closely than reduced forms, in terms of both duration and segment realization, per-

haps because “listeners reconstruct canonical forms from their reduced forms” (36). No

individual results are reported.

Cole and Shattuck-Hufnagel (2011) examined whether listeners imitated prosodic cat-

egories (accents and boundaries), and the phonetic realization of particular categories.

Six subjects repeated utterances excised from a spontaneous speech corpus of American

English. Both the target and repeated productions were prosodically transcribed for the
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presence of accents and boundaries, in ToBI format. Phonological form was usually pre-

served: accents or boundaries were seldom deleted or added, though all speakers did

so to some extent. In contrast, a preliminary analysis of some data suggested that the

phonetic realization of prosodic categories was not imitated. Thus, subjects imitated con-

trastive but not non-contrastive variation, as for Mitterer and Ernestus (2008).

Sociolinguistic variables All studies discussed so far address short-term shifts in ex-

perimental settings. A final strand of studies analyzes short-term shifts during conversa-

tional interaction in traditional sociolinguistic variables: categorical variables which are

socially stratified (e.g., by region, social class, race).

Coupland (1984) examined how a shop assistant in Cardiff (Wales), “Sue”, uses four

categorical sociolinguistic variables in interactions with 51 customers from different social

classes. Each variable is socially stratified: higher-class customers use fewer non-standard

variants. With customers pooled by class, Sue clearly accommodated towards customers

in each variable: correlations between her rate of usage of the non-standard form and the

customers’ range from 0.76 to 0.90.

Trudgill (1986: 7–11) examined the rates of use of two sociolinguistic variables (the

realization of BATH and of /t/) by himself and the interviewee in 10 sociolinguistic inter-

views conducted a decade earlier in his hometown (Norwich, England), to test whether

accommodation took place. There is strong evidence for accommodation for /t/, due

to Trudgill accommodating to the interviewees usage, but not for BATH. The different

behavior of the variables is ascribed to the high social salience of /t/ relative to BATH.

Hay et al. (1999) analysed the use of the socially-salient /ay/ vowel by the talk show

host Oprah Winfrey for effects of her interlocutor’s ethnicity and lexical frequency. Oprah

used the monophthongal [a:] variant (which is associated with African American English)

significantly more frequently with African American guests than with non-African Amer-

ican guests, suggesting she was accommodating based on the guest’s ethnicity.
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Two other short-term studies examine short-term shifts in communities where level-

ing of local dialects towards a (regional or national) standard is taking place. The question

in each case is whether community-level leveling is foreshadowed in short-term shifts

during interaction, as predicted by an influential theory of the sources of dialect change

(see Sec. 4.3.3.1)

As part of a larger study of dialect leveling in Luxembourgish, Gilles (1999, summa-

rized in Auer and Hinskens, 2005) examined the use of four vocalic features by five speak-

ers of non-standard dialects of Luxembourgish (only some variables for each speaker), in

conversations with speakers of other dialects (who use the standard variants almost ex-

clusively) vs. speakers of their own dialect. In most cases speakers used fewer standard

forms in interdialectal conversations than in intradialectal conversations, the opposite of

the predicted pattern. The amount of shift (difference between interdialectal and intra-

dialectal usage) varied hugely between speakers and variables, with the opposite (i.e.,

predicted) pattern sometimes occurring.30 The results for one variable suggest ‘psycho-

logical accommodation’ towards a stereotype of the variable’s usage in the conversation

partner’s regional dialect, rather than her actual usage during the conversation (Thakerar

et al., 1982).

As part of a larger study of dialect leveling in Limburg (a Dutch-speaking region),

Hinskens (1996) examined the use of three consonantal features (Ga-weakening, n-deletion,

t-deletion) by 27 speakers of the dialect of the village of Rimburg, in conversations both

with other Rimburg speakers (C1; all 27 speakers) and with speakers of three progres-

sively more standard varieties of Dutch (C2, C3, C4; nine speakers each). The non-

standard variants of the three features have different areal spreads: Ga-weakening only

in C1, n-deletion in C1/C2, and t-deletion in C1/C2/C3. For each variable, the standard

variant was used less in in-group conversations (C1) than in out-group conversations (C2,

30. From the empirical data it looks like some shift nearly always occurs, but statistical significances are
not given.

94



C3, or C4), the expected pattern. (The difference was significant for two variables and

marginal for one.) The difference was greatest for the most local variable (Ga-weakening),

suggesting that more geographically-restricted variants were more susceptible to short-

term shifts.

4.3.2.4 Discussion

The short-term literature sheds some light on the three questions raised above about shifts

in pronunciation, on the timescale of laboratory experiments, conversations, or sociolin-

guistic interviews.

Stability and change Short-term shifts were found for both gradient variables (VOT;

vowel formants, duration, overall spectrum, and amount of devoicing; segment reduc-

tion) and categorical variables (prosodic realization, segment deletion, several sociolin-

guistic variables). A smaller number of variables showed marked stability, most strik-

ingly Dutch /r/ realization. For variables which did change, when individual differences

were reported, there were large differences in the magnitude of shift for different speak-

ers, who sometimes differed in the direction of the shift as well. But crucially, most speakers

showed some shift. We do not observe a majority of speakers who are stable and a minority

who change, as in many long-term studies. In some short-term studies (e.g., Babel, 2011;

Nielsen, 2011) a small number of speakers changed much more than others, but overall

we do not see a division between changers and non-changers.

Interspeaker differences In most studies where individual results were reported, the

amount of short-term shift varied significantly among speakers. In some cases social fac-

tors provided a simple and intuitive explanation for some variation, for example when the

direction and degree of shift lined up well with feelings towards the interlocutor (Abrego-

Collier et al., 2011; Babel, 2010), or the interlocutor’s dialect region (Delvaux and Soquet,

95



2007), social class (Coupland, 1984), or use of the variable (Trudgill, 1986).

However, in other studies the proposed role of social factors is more complicated.

For example, Pardo (2006) found that women shift less than men, direction givers shift

towards direction receivers, and the two factors interact; Pardo proposed possible expla-

nations related to speakers’ communicative goals. However, the opposite pattern was

expected from the Communication Accommodation Theory literature: women generally

shift towards men, and receivers towards givers (e.g., Namy et al., 2002). Other short-

term studies have found conflicting gender effects: Abrego-Collier et al. (2011) found no

effect on VOT, and Babel (2011) found a complex interaction with other factors (but no

main effect) on vowel formants. In each case, a reasonable account is given of why social

variables affected short-term shifts in the observed manner, and why some predictions

from previous work were not met. But the existence of such different findings suggests

that the effects of social variables on shifts in pronunciation are far from straightforward,

raising the question of how confident we can ever be in the post-hoc account given for a

particular case.

One response to this issue notes that the link between social variables and shifts in pro-

nunciation is expected to be complicated. Even in a controlled setting, how speakers shift

will depend on the experimental setup (e.g., conversation, a map task, shadowing), social

dynamics with the interlocutor, the topic of conversation, and so on; whole subfields of

sociolinguistics (style shifting, discourse analysis) examine such shifts during conversa-

tion. Much more study is needed before we can make valid generalizations about the

factors affecting short-term pronunciation shifts in experiments. The researcher’s job is to

perform a detailed analysis of an experiment’s results, and find a plausible interpretation.

Theories from social psychology or anthropology are invaluable in doing so, when used

responsibly.

Another response questions the utility of such theories in general in explaining pat-

terns of shift. Meyerhoff (1998: 208) laments that CAT, the most frequently-used frame-
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work, is often invoked in the face of messy data “to give the impression that the investi-

gator has ‘explained’ all observed patterns.” Siegel (2010: 73) notes that “many of [CAT’s]

claims do not seem to be falsifiable... the theory predicts that in an interaction, a person

with less power will converge with (or accommodate to) a person with more power. But

the theory also stipulates that this prediction can be overridden by other situational or

personal factors.”31 These criticisms apply equally to automatic accounts: imitation is

automatic if observed, and mediated by a social variable if not.

In our view, these critiques are very important, and it is still not clear what can be

concluded about the effect of social variables on short-term shifts in phonetic and phono-

logical variables. Importantly, for our purposes what matters is not the interpretation of

these shifts, but their existence, and how general they are across speakers and variables.

Intervariable differences Many short-term studies have found differences in how sus-

ceptible different variables are to shift, and propose a range of explanations.

Phonological contrast: Mitterer and Ernestus (2008) suggests that short-term shift is

phonologically mediated: speakers will imitate contrastive but not subphonemic varia-

tion. This view is also supposed by Cole and Shattuck-Hufnagel’s pilot study of prosodic

imitation. However, many other studies (e.g., Babel, Nielsen, Delvaux & Soquet) have

found robust short-term shifts in subphonemic variation. Nielsen (2011) suggests that

contrast maintenance is a factor in what short-term shifts are possible: speakers shifted

towards increased but not decreased VOT, because decreasing VOT would endanger the

contrast with voiced stops. However, speakers in many other studies, including Nielsen’s

(2010) work on vowel devoicing, shift in contrast-endangering directions.

Social salience: Trudgill (1986) suggests that socially-salient variables are more likely

to undergo both short-term and long-term shifts. However, this pattern has not been

31. Note that Siegel and Meyerhoff are discussing the use of CAT in studies of second dialect acquisition
and sociolinguistics, respectively. However, their criticisms carry over directly to experimental studies of
short-term shifts in pronunciation.
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found in other studies where several variables of different degrees of salience are consid-

ered. Trudgill also predicts that variables which are too salient (“extra-strong salience”)

will not shift, a move widely criticized as making the definition of salience circular (e.g.,

Hinskens, 1996; Kerswill and Williams, 2002). Babel (2010) found that the most socially-

salient vowels shifted the least for her New Zealand English talkers, and suggests their

salience prevented them from shifting. Vallabha and Tuller (2004) found that speakers

shifted in response to target vowels throughout formant space (hence, regardless of so-

cial salience), though the role of social salience was not explicitly examined.

Distance from target: Babel (2011) found that speakers converged much more for low

vowels than for non-low vowels. Since the realization of low vowels varies greatly among

American English dialects, she speculates that speakers may have reference vowels fur-

ther from the target on average, and thus have more room to shift (however, information

on speakers’ dialect regions was not available). Similarly, Babel (2010) found that two

of the vowels which showed the most convergence were those which differ the most be-

tween Australian (model talkers) and New Zealand (subjects) English.

Geographical spread: Considering three categorical variables, Hinskens (1996) found

that the amount of shift in a variable by speakers of a regional Dutch dialect, in conversa-

tion with speakers of other dialects, was inversely related to the variable’s geographical

spread. This can also be interpreted as the amount of shift in a variable correlating with

the difference in its rate of usage between the two speakers, which might be interpreted

as “distance from target” for categorical variables.

In sum, many explanations have been proposed to explain differences in the degree

of short-term shift for different variables, but a coherent picture has not yet emerged.

Most explanations have not been tested in more than one or two studies, or have several

exceptions. Unlike in the long-term literature, there have been no short-term studies con-

sidering a large number of variables of different types at once, so the gamut of proposed

explanations have never been compared on a fixed dataset. As more studies are carried
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out, we speculate that a variable’s short-term plasticity will depend on a range of factors,

as is the case for long-term change.

4.3.3 Linking short-term and long-term

4.3.3.1 The change-by-accommodation model

Beginning with the Neogrammarians (Paul, 1880), variants of what Auer and Hinskens

(2005) call the change-by-accommodation model (CBA) have been proposed to explain the re-

lationship between individual-level and community-level change, as a sequence of three

steps:32

1. Short-term change: People accommodate to each other during interactions.

2. Long-term change: Eventually, an individual’s norms change as a result of these in-

teractions.

3. Language change: Spread of the innovation in the wider community.

We focus on Steps 1 and 2, which describe change in the individual. The best-known

statement of CBA comes from Trudgill’s seminal work on dialect change, and invokes

accommodation theory:

In face-to-face interaction... speakers accommodate to each other linguistically

by reducing the dissimilarities between their speech patterns and adopting

features from each other’s speech. If a speaker accommodates frequently enough

to a particular accent or dialect, I would go on to argue, then the accommoda-

tion may become permanent, particularly if attitudinal factors are favourable...

(Trudgill, 1986: 39)

32. Auer and Hinskens use the terms “short-term accommodation” and “long-term accommodation.”
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In Trudgill’s terms, short-term accommodation, if it occurs often enough, leads to long-

term accommodation. In other words, the more you interact with speakers who speak

differently from you, the more your speech shifts towards theirs over time. Variants of

CBA have been proposed both for dialect change/contact and for change internal to a

speech community. Two basic versions of the model can be distinguished, corresponding

to the automatic and social positions on the causes of short-term shifts.

One view is that the short-term shifts which happen during conversation are largely

subconscious and automatic, and identity and social factors play a much smaller role.

Higher use of some variant in a social group comes about as a result of more frequent

contact among members of the group than with non-members, not because the variant

serves a social function. Trudgill (2004) has most forcefully argued this viewpoint, in

the context of new dialect formation. Much earlier, Bloomfield (1933) emphasized the

importance of the principle of density: every time two speakers communicate, their sound

system becomes more similar.33 Citing the principle of density and speaking more guard-

edly than Trudgill, Labov (2000: 506) argues that “it is good practice to consider first the

simple and more mechanical view that social structure affects linguistic output through

changes in the frequency of interaction” rather than assume social motivations for Steps

1–2 by default. Finally, the automatic view is explicitly adopted in some short-term stud-

ies: for Delvaux and Soquet (2007: 146), the motivation for studying the effect of exposure

to speech from a different dialect region is “the hypothesis that sound change partly orig-

inates in mutual and unintentional imitation between interacting speakers.”

On another view, short-term shifts during conversation are fundamentally social, as

proposed by CAT, the result of accommodation by speakers to achieve social goals. Un-

der this view, the social stratification of speech results from variants which have become

33. However, Bloomfield also emphasized the role of (what is now called) prestige in which short-term
shifts occur: “The humble person is not imitated; the lor or leader is a model to most of those who hear
him. In conversation with him, the common man avoids giving offense or cause for ridicule; he suppresses
such of his habits as might seem peculiar, and tries to ingratiate himself by talking as he hears” (476–477).
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associated with a particular social groups being used more by those who identify with

the group and less by others, and so on. The role of social factors has already been al-

luded to in Trudgill’s “particularly if attitudinal factors are favourable” above. In the

short-term literature, results which show effects of social variables on short-term shifts

are sometimes interpreted in the context of a social version of CBA. For example, Pardo

(2006) interprets the finding of gender and talker role effects on shifts in pronunciation

as “rapid phonetic convergence that emerges in conversational settings, providing a link

between the laboratory studies of nonsocial shadowing imitation and community-level

linguistic change.”

The identity projection model Auer and Hinskens (2005) call into question a key as-

sumption of CBA: that people shift with respect to the interlocutor’s speech (i.e., directly

towards or away from it) in Step 1. They discuss a number of short-term studies, includ-

ing the Luxembourg study discussed above, which suggest that speakers are shifting not

with respect to their interlocutor, but a subjective picture of how he ‘should’ sound. More

generally, the identity-projection model holds that short-term shifts in conversation result

from the speaker expressing a particular persona by shifting his usage towards what he

thinks that persona sounds like. Thus, frequency of interaction or face-to-face contact

with interlocutors who use a variant are not necessary for a speaker to increase his use

of the variant over time.34 Auer and Hinskens point out that the subjective component

of accommodation has long been recognized in the CAT literature. In response to cases

where divergence was observed where convergence was expected, a distinction between

‘objective convergence’ and ‘subjective convergence’ was introduced into CAT (Thakerar

et al., 1982).

The identity projection model assumes that long-term change does occur in individu-

als (Step 2), and foreshadows change in the community (p. 351). Long-term change is not

34. The identity projection model has much in common with Le Page and Tabouret-Keller’s ‘acts of iden-
tity’ and Bell’s ‘referee design’ (Bell, 2001; Le Page and Tabouret-Keller, 1985).
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explicitly stated to result from an accumulation of short-term shifts (towards a subjective

target), but this seems to be assumed in the discussion.35

4.3.3.2 Medium-term change

Our review of the short-term and long-term literatures suggests two motivations for

studying medium-term change: intermediate timescales between hours and years.

The mismatch between short-term and long-term change Both CBA and the identity

projection model make an important assumption, which we call the persistence hypothesis:

that short-term shifts which an individual makes during interaction can and do accu-

mulate over time into long-term change. The short-term literature discussed above sug-

gests that short-term shifts do take place, for most variables studied so far, for most adult

speakers. Thus, if there is any systematicity in a speaker’s short-term shifts for a variable

during interaction—whether to the interlocutor’s speech, or to a stereotype—his use of

the variable should change over the long term. But this conflicts with the long-term lit-

erature, where we saw that most speakers are stable, while a minority shift significantly.

There were also huge differences in how plastic different variables were in the long term,

while nearly all variables in short-term studies show shifts. How can we reconcile the dif-

ferent patterns seen in short term and long-term change, and where does the disconnect

between the two lie? To understand the mismatch between short-term and long-term dy-

namics, we must understand what longitudinal variation in individuals looks like over

timescales in between.

Problems in interpreting short-term and long-term studies Another motivation is that

we know very little about any timescale between short-term and long-term studies—yet

what happens over intermediate timescales is crucial for interpreting the results of both.

35. cf. Hinskens (1996: 20): “Like Bloomfield and Trudgill, we are convinced that the process of dialect
leveling starts as the interactionally motivated phenomenon of linguistic accommodation.”
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The persistence hypothesis is tacitly assumed by much short-term work, where a ma-

jor motivation is to understand the first steps of language change under a CBA-style ac-

count. However, to my knowledge there is no work examining the persistence of short-

term shifts in phonetic or phonological variables for more than one hour.36 Thus, we

actually have no hard data on whether such shifts can persist over days to months. If the

persistence hypothesis is false, short-term shifts would be interesting phenomena, but

with limited relevance to language change.

In long-term studies, an individual is recorded at several timepoints (usually two)

years apart to see whether change occurred in some variables. This procedure assumes

that individuals vary relatively little from day to day in their use of a variable. Under this

stationarity hypothesis, any change observed in a speaker’s use of the variable after control-

ling for conditioning factors is meaningful. But as Nahkola and Saanilahti pointed out,

we know very little about whether individuals fluctuate from day to day in their use of

most variables.37 If the stationarity hypothesis is false, understanding how much speak-

ers fluctuate from day to day is crucial for interpreting the results of long-term studies.

Finally, at least in their simplest forms, the stationarity hypothesis and the persistence

hypothesis conflict. If short-term shifts are persistent, than there would be significant

noise even within the same day, violating the stationarity hypothesis. If the stationarity

hypothesis holds, there can be no accumulation of short-term shifts. Which hypothesis,

if either, is correct? Both can be checked by examining trajectories of variables within

individuals over the medium term. If they show clear time trends, then these could be the

result of accumulated short-term shifts. If they show little day-to-day noise, the station-

arity hypothesis is supported.

36. Goldinger (2000) shows persistence over 1 week, but of the overall percept rather than an acoustic
dimension.

37. One exception is a laboratory study of vowel productions by two American English speakers on two
consecutive days Pisoni (1980).
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4.4 Previous work on phonetic variables

4.4.1 Voice onset time

VOT was introduced In Sec. 3.1. A vast literature on VOT in speech production and

perception has developed over the past 50 years, from both experimental and clinical

perspectives. Here we review important aspects of previous speech production studies

of VOT in the (experimental) phonetics literature, which is the strand most relevant to

the current study.38 Most production studies have examined VOT in planned speech in

laboratory experiments, in contrast to our study of VOT in spontaneous non-laboratory

speech.39 In particular, VOT is most often examined for stops in words or syllables

spoken in a laboratory setting, either in isolation or in a carrier phrase. Fewer studies

have examined VOT in read speech (Byrd, 1993; Crystal and House, 1988a,b; Lisker and

Abramson, 1967; Picheny et al., 1986; Randolph, 1989) or in conversational speech (Baran

et al., 1977; Lisker and Abramson, 1967; Yao, 2009b). Two studies have built models to

understand the joint effect of different factors on VOT in speech corpora: Yao applies

linear regression to VOTs from the Buckeye Corpus of spontaneous speech (2 speakers,

776 VOTs), and Randolph builds a regression tree for 7900 VOTs from three read speech

databases (including TIMIT).40 Both studies reach interesting conclusions relative to labo-

ratory studies. Yao finds that her two speakers differ greatly in which factors affect VOT

the most, and that the most-discussed factor in laboratory studies (place of articulation)

has a small effect relative to other factors. Both studies find that much of the variation in

38. Even this strand is too large to give a full review here, and to my knowledge none exist. Useful partial
reviews are given by Auzou et al. (2000) and Yao (2009b), and Docherty (1992) gives a comprehensive
review of studies of VOT in English up to about 1990.

39. A further difference is that most studies have considered American English speakers, though there
is a respectable sub-literature on VOT in British dialects, mostly Received Pronunciation (e.g., Docherty,
1992; Docherty et al., 2011; Heselwood and McChrystal, 2000; Masuya, 1997; Scobbie, 2006; Suomi, 1980;
Whiteside and Irving, 1997). Because the Big Brother speakers come from a variety of dialect regions and
are not all British, we hesitate to call this a study of VOT in British English. The main difference from
previous work is that almost all speakers are not American.

40. Randolph actually considers stop release duration, a slightly different measure from VOT.
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Table 4.1: Expected effects of conditioning factors on VOT for English word-initial voice-
less stops.

Factor Expected

Place of articulation /p/ ≤ /t/ ≤ /k/
Following segment type Vowel < Sonorant
Following vowel Non-high < High
Syllable stress Unstressed < Stressed
Pitch Low/medium < High
Speaking rate Faster < slower
Gender Male ≤ female

Individual speakers
Differ in baseline VOT
Differ in effect of speaking rate
Do not differ in effect of POA

their data remains unexplained by the model.

4.4.1.1 Conditioning factors

There is huge VOT variation in stops produced by English speakers, much of which is

due to properties of the linguistic context, speaker, type of speech, and the recording en-

vironment. We review the major conditioning factors, specifically in word-initial voice-

less stops (which our dataset consists of), with more detail given for factors which will be

modeled for the Big Brother data. Table 4.1 summarizes the expected effect of each factor.

We will not discuss proposals as to why each factor influences VOT in a particular way.

However, many proposals exist, and can be found in the references cited.

Segmental properties Whether a stop consonant is voiced or voiceless is probably the

largest single factor affecting VOT.41

After voicing, the best-known factor influencing a stop’s VOT is its place of artic-

41. This intuition is supported by the results of Randolph’s model, where voicing specification is the first
split in the decision tree, implying that this feature was more informative for determining VOT than any
other single feature. However, his model does not include speaking rate, which would be expected to have
a very large effect.
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ulation: VOT increases for stops articulated more towards the back of the vocal tract,

cross linguistically (Cho and Ladefoged, 1999; Lisker and Abramson, 1964). The expected

ordering for voiceless stops in English (and cross linguistically) is /p/</t/</k/ (e.g.,

Lisker and Abramson, 1967; Nearey and Rochet, 1994; Zue, 1976). Other studies have

found a subset of the total order: /p/=/t/</k/ or /p/</t/=/k/ (e.g., Cooper, 1991;

Crystal and House, 1988a; Docherty, 1992).

VOT is also influenced by the identity of segments following the stop consonant. Ini-

tial stops in consonant clusters (e.g., /pr/, /kl/) tend to have longer VOTs than those

in CV syllables (Docherty, 1992; Klatt, 1975; Morris et al., 2008; Zue, 1976). The quality

of the following vowel (whether the stop occurs in a consonant cluster of not) has also

generally been found to have some effect (except by Lisker and Abramson, 1967; Zue,

1976) A generalization describing most previous work is that VOT for English voiceless

stops is lengthened before high vowels, especially /i/ and /u/, compared to non-high

vowels (e.g., Docherty, 1992; Klatt, 1975; Nearey and Rochet, 1994; Ohala, 1981; Port and

Rotunno, 1979), though different studies have found a variety of (sometimes conflicting)

more specific effects. Some studies have found an interaction between the effect of the

following vowel and the stop’s place of articulation on VOT (e.g., Morris et al., 2008;

Summerfield, 1975b), while others have not (e.g., Nearey and Rochet, 1994).42

Suprasegmental factors VOT decreases with increased speaking rate for voiceless stops,

but shows little or no change for voiced stops (e.g., Allen et al., 2003; Miller et al., 1986;

Summerfield, 1975a; Volaitis and Miller, 1992). The asymmetry between the rate effect

for voiced and voiceless stops appears to hold cross linguistically (in Thai, French, and

English; Kessinger and Blumstein, 1997). The effect of speaking rate is large relative to

other factors.43 Accordingly, speaking rate is often controlled for in experimental studies

42. Docherty (1992:143) reports mean VOT values, cross tabulated by place of articulation and height of
the following vowel, which seem to show an interaction. However, a statistical test is not given.

43. For example, in a study of isolated English words beginning with voiceless stops, Allen et al. (2003:
549) found that “82% of the total variability [in VOT] was attributable to differences in talkers in overall
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of VOT (when it is not itself the object of study), usually using a local measure of duration

(of the following vowel, or the syllable or word containing the stop) as a proxy.

Stress and pitch also affect VOT. For voiceless stops, VOT is longer before stressed

vowels than before unstressed vowels, and the opposite effect holds for voiced stops

(Lisker and Abramson, 1967), making VOT is a less reliable cue to stop voicing in un-

stressed syllables. In an experiment where speakers read sentences at one of three pitch

levels, McCrea and Morris (2005) found that VOT of voiceless stops increased for high

pitch, compared to medium or low pitch, but there was no pitch effect for voiced stops.

Other linguistic factors Other aspects of the host word affect VOT. In line with the

general finding that segments tend to undergo more reduction in frequent words and in

more predictable contexts (see Bell et al., 2009 for a recent review), one might expect that

VOT would be shorter for more frequent words. VanDam and Port (2005) and Yao (2009b)

found significant effects in the expected direction, while Abrego-Collier et al. (2011) found

no significant effect.44 VOT is longer for word-initial stops in monosyllabic words, rela-

tive to disyllables (Klatt, 1973; Lisker and Abramson, 1967). For closed syllables beginning

with a stop, VOT is longer when the coda is voiced vs. voiceless (Port and Rotunno, 1979;

Weismer, 1979).

Finally, VOT is affected by properties of the utterance the host word appears in. Lisker

and Abramson (1967) and Baran et al. (1977) found that voiceless stops in isolated words

generally have longer VOTs (i.e., more positive) compared to words in sentences, and

the opposite effect holds for voiced stops; that is, the voicing distinction is enhanced for

words spoken in isolation.45 Docherty (1992:140) observes a similar pattern, but it does

rate”. It is not totally clear how this figure is obtained, but Allen et al. ’s point, that rate is by far the most
important explanatory factor for their data, holds.

44. In fact, Abrego-Collier et al. found a marginal effect (p < 0.1) in the opposite direction: more frequent
words had longer VOTs.

45. Lisker and Abramson considered isolated words, “minimal pairs”, and words in sentences; Baran
et al. considered isolated words, read speech, and both adult- and child-directed conversational speech.
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not reach significance.

Speaker factors Facts about the speaker have also been shown to affect VOT. Two stud-

ies have examined the extent to which speakers differ in VOT and in the effect of factors

conditioning VOT, using mixed-effects models.46 Allen et al. (2003) found that Ameri-

can English speakers have different characteristic VOT values, even after controlling for

speakers’ different characteristic speaking rates. Theodore et al. (2009) replicated this re-

sult, and also found that speakers differed in the effect of speaking rate. (VOT decreases

more with increased rate for some speakers than for other.) However, speakers did not

differ in the effect of place of articulation (specifically, /p/ vs. /k/).

There have been conflicting findings on how and whether the speaker’s sex affects

VOT (see Morris et al., 2008). Many studies of American and British English have found

that female speakers tend to have higher VOTs than male speakers (e.g., Robb et al., 2005;

Swartz, 1992; Whiteside and Irving, 1997). However, as pointed out by Morris et al., these

studies have generally not controlled for speaking rate.47 Studies where speaking rate

is considered (Allen et al., 2003; Morris et al., 2008), as well as some other studies (e.g.,

Ryalls et al., 2004, 1997; Sweeting and Baken, 1982), have not found gender differences.

Other social factors have been found to affect VOT, especially age and ethnicity (e.g.,

Ryalls et al., 2004, 1997; Sweeting and Baken, 1982). I omit discusion of this work, since so-

cial factors besides gender cannot be modeled for the Big Brother data due to the skewed

social characteristics (e.g., speakers come from a narrow age range) of the housemates.

A final factor affecting VOT for British speakers in particular is dialect background.

Heselwood and McChrystal (2000) found that English phonologically-voiced ([+voice])

stops were prevoiced (negative VOT) much more often by Panjabi-English bilingual chil-

46. These are to my knowledge the only previous studies using mixed-effects models of VOT variation.

47. Morris et al. do not discuss why speaking rate is a potential confound; presumably it is because
women speak slightly slower than men on average (in American English, tentatively in British English:
Byrd, 1994; Jacewicz et al., 2009; Whiteside, 1996), and speaking rate is negatively correlated with VOT. An
apparent gender effect might therefore actually be due to the female subjects speaking slower.
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dren than English monolingual children, while there was no VOT difference for voiceless

stops. Scobbie (2006) finds a fascinating pattern of interspeaker VOT variation in the

Shetland Islands: the percentage of prevoicing of [+voice] is inversely correlated with the

duration of VOT in voiceless stops, across speakers. Thus, VOT remains the primary cue

to [voice] for all speakers, but is used in different ways.48 Docherty et al. (2011) also find

interspeaker variation in VOT systems, in four towns along the Scottish-English border.

[+voice] stops are realized as prevoiced or short-lag by older speakers, but almost exclu-

sively as short-lag by younger speakers; voiceless stops have very slightly longer VOT

for younger than for older speakers. Thus, there is less evidence for contrast mainte-

nance (which would entail younger speakers having significantly higher VOT for voice-

less stops) than in Scobbie’s study.

4.4.2 Coronal stop deletion

Coronal stop deletion (CSD) is a variable phonological process in English in which word-

final coronal stops (/t/ and /d/) are sometimes deleted in word-final consonant clusters

(e.g., bes’ vs. best).49 Beginning with a series of seminal studies by Labov and colleagues

(Labov and Cohen, 1967; Labov et al., 1965, 1968), CSD has been the subject of dozens

of studies spanning nearly 50 years in many varieties of English. CSD has been found in

every variety studied, and indeed very similar processes operate across varieties of Dutch

(one of English’s closest relatives) as well (e.g., Goeman, 1999; Hinskens, 1996), suggest-

ing it has a long history. However, the vast majority of studies have considered North

American varieties. For British varieties in particular, to my knowledge there have been

48. Bradford is a city in West Yorkshire (England) where a substantial minority of the population is of
South Asian origin. The Shetland Islands lie northeast of Great Britain, between Scotland and Norway.
The local varieties of Scots and Scottish English traditionally show some Nordic influence, but have been
rapidly changing with immigration from the mainland.

49. That processes such as CSD are properly ‘phonological’ rather than ‘phonetic’ has been vigorously
argued for over the past 15 years (see Coetzee and Pater, 2011). Nonetheless, we will often use the adjective
‘phonetic’, following the discussion in Sec. 1.2.
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Table 4.2: Summary of expected effects of conditioning factors discussed in the text on
coronal stop deletion rate. Asterisks denote a factor modeled for the Big Brother data.

Factor Expected Note

Following context* Consonant > {Vowel, Pause} Varies by variety
Preceding context* /s/ > Sonorant > Obstruent
Morphological class* Monomorpheme > Semi-weak

past> Weak past
No effect found by TT

Word frequency* Higher ≥ Lower Varies by study
Speaking rate Faster > Slower
Cluster voicing* Homo-voiced > Hetero-voiced
Gender* Female > Male
Situational context Casual > Formal
Attention to speech Monitored > spontaneous

two studies, on adults (ages 16–91) in York, England (Tagliamonte and Temple, 2005), and

on children and caregivers in Buckie, Scotland (Smith et al., 2009). We abbreviate these

studies by TT and Smith et al.

4.4.2.1 Conditioning factors

Here we summarize the major linguistic and social factors conditioning the rate of CSD.

Given the diversity of accents in the Big Brother house, we pay particular attention to

what is known about how consistent each factor’s effects are across varieties of English.

Table 4.2 summarizes the expected effect of each factor. We do not provide a comprehen-

sive review of the CSD literature, much less the large literatures on related topics such

as the determinants of segmental reduction in general. Useful recent reviews of the CSD

literature are given by Schreier (2005), TT, Smith et al., and especially Hazen (2011).

Following phonological context Most studies have found the most important factor

conditioning CSD rate to be the identity of the following segment, which we call the fol-

lowing (phonological) context.50 The basic finding is that deletion occurs much more often

50. Notable exceptions are Chicano English in Los Angeles (Santa Ana, 1996) and Tejano English in San
Antonio (Bayley, 1994), where preceding phonological context is the most important factor.
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before consonants than before vowels. Varieties differ in the effect of a following pause

(Schreier, 2005:203–208). For example, a following pause behaves similarly to a following

vowel (inhibiting deletion) in Philadelphia, but similarly to a following consonant (pro-

moting deletion) in New York (Guy, 1980). More fine-grained categories than C/V/pause

have been argued to influence deletion rate, roughly according to sonority: deletion oc-

curs less often before less sonorous segments (glides, vowels) than before more sonorous

segments (obstruents). Only the broader classification of following context (C/V/pause)

is used in our models.

Preceding phonological context CSD rate is also influenced by the preceding conso-

nant (in the word-final cluster), or preceding (phonological) context. Preceding context has

usually been found to have a smaller effect than following context. The broad finding

of previous studies on American and British varieties has been that deletion occurs more

often following sonorants (glides, liquids, nasals) than following obstruents (stops, frica-

tives, affricates), with some exceptions. Many studies separate out a class of consonants

which are somehow similar to coronal stops, and tend to favor deletion most of all, for ex-

ample /s/ (most studies), all sibilants (/s/, /z/, /tS/, /dZ/; TT), or /s/ and /n/ (Hazen,

2011). However, the pattern is reversed in a number of contact-induced varieties, with

preceding sonorants promoting deletion relative to preceding obstruents (see Schreier,

2005). More fine-grained hierarchies have been argued for, roughly according to sonority

(greater sonority ⇒ less deletion, for US and UK varieties), but are not discussed here.

Our models use the broader division of preceding context used by TT (sibilants/other

obstruents/sonorants).

Morphological class Along with phonological context, the most-discussed condition-

ing factor for CSD is the morphological class of the host word.51 The classic finding is that

51. Besides the empirical studies discussed here, there has been much interest among sociolinguists and
phonologists in explaining morphological effects on CSD (e.g., Coetzee and Pater, 2011; Guy, 1991).
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deletion occurs less frequently for bimorphemes (past tenses, passive adjectives) than for

monomorphemes. More specifically, the expected pattern is for deletion to occur more

often for regular (or “weak”) past tense forms (missed, walked) than for monomorphemes

(mist, best), with the deletion rate for irregular (or “semi-weak”) past tense forms (kept,

dreamt) falling somewhere between the two. This pattern has been found in most cases,

including many regional and ethnic varieties in the US (e.g., Fasold, 1972; Guy, 1991;

Hazen, 2011; Santa Ana, 1992; Wolfram, 1969), and the variety of Smith et al.’s Scottish

adults.

Many contact-induced varieties of English show the opposite pattern, with word-

final t/d deleting less in monomorphemes than in bimorphemes, for example Jamaican

Mesolectal Creole, St. Helena English, Tristian da Cunha English, and Bequia English

(Daleszynska, 2011; Patrick, 1991; Schreier, 2005). This pattern is likely due to the inter-

action of CSD with another variable process active in these varieties, where overt tense

marking on past tense forms is optional. Bimorphemes are affected by both processes,

while monomorphemes are only affected by CSD, so that bimorphemes show higher rates

of CSD.

While the direction of the effect varies, all previous work has found some effect of

morphological class, with one exception. In their study of York English, TT found no

morphological effect in their statistical model, despite the presence of the expected trend

(monomorphemes > semi-weak > weak) in the empirical deletion rates in their data.

They suggest that the mismatch between the model and the empirical trend is due to

a fact about the English lexicon: monomorphemic words are more likely than bimor-

phemic words to have preceding phonological contexts which promote deletion, so that

“an apparently morphological effect may be an artifact of the distribution of phonolog-

ical contexts across morphological categories” (296). The correlation between preceding

context and morphological status was also noted by Hazen (2011), who found an unex-

pectedly weak (though significant) morphological effect on CSD in Appalachian English,
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suggesting that “apparent morphological influences are actually phonological influences

that present themselves as morphological trends” (105).

TT attribute their finding of no morphological effect, which contrasts with all North

American studies, to a difference between how CSD operates in British and American

varieties. However, Smith et al. subsequently found the expected morphological effect

for Scottish speakers, raising the possibility that TT’s finding might be restricted to only

some British varieties, or simply spurious. Modeling CSD for the British speakers on Big

Brother will provide another British data point.

Other linguistic factors A number of other linguistic factors influence the rate of CSD.

Since deletion results in reduced pronunciations (i.e., a pronunciation where some seg-

ments are shortened or deleted), it might be expected that word frequency would be

positively correlated with CSD rate, in line with the general finding that frequent words

tend to be more reduced (e.g., Fidelholtz, 1975; Jurafsky et al., 2001; Schuchardt, 1885;

Zipf, 1929). Several studies have argued for such effects on CSD (Bybee, 2000, 2007; Juraf-

sky et al., 2001; Myers and Guy, 1997). However, as pointed out by Walker (2012), these

studies tend to examine frequency without controlling for other factors (e.g., phonologi-

cal context, morphological class). Most studies where such factors have been considered

alongside frequency have found no significant frequency effect (Hazen, 2011; Raymond

et al., 2006; Walker, 2012), with the exception of Johnson (2012).52

The voicing status of the word-final consonant cluster also influences CSD. The stan-

dard finding is that deletion occurs more often for homo-voiced clusters (where the pre-

ceding consonant and the coronal are both voiceless or both voiced: bend, fact) than for

hetero-voiced clusters ( bent, melt) (e.g., Bayley, 1994; Fasold, 1972; Khan, 1991; Labov

et al., 1968; Santa Ana, 1996; Wolfram, 1969). However, a strong effect in the opposite

direction was found in Appalachian English (Hazen, 2011). Cluster voicing is not consid-

52. There are some caveats related to methodological differences between the studies, which are dis-
cussed further when we examine the effect of frequency in the Big Brother data (Sec. 6.2.3)
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ered by TT or Smith et al.

Non-linguistic factors Among properly social factors, ethnicity and age strongly affect

CSD rate, while social class, sex, and other social factors have weak effects.53 Ethnicity

can be taken as a special case of differences between varieties, which in general show

very different overall rates of CSD deletion (Schreier, 2005). Because of the small number

and social heterogeneity of speakers in our dataset, we are not able to check for effects of

social factors besides gender, with women expected to delete slightly more than men.

CSD rates tend to increase in more informal speaking styles (e.g., causal versus read

speech) It is not clear whether this should be ascribed to speaking rate (informal speech

tends to be faster), or a stylistic difference per se. Labov (2001: 196) argues that speakers

have only mild social awareness of CSD, and show only moderate style shifting, at least

for North American varieties. However, Smith et al. found large effects of situational

context for the parents (but not the children) in their Scottish data. The most deletion

was during play, followed by routine activities, followed by teaching and discipline. This

effect is explained as decreased deletion rate in contexts where the parent is more likely

to be monitoring her speech, and trying to “talk clearly” (90).

4.4.3 Vowel formants

Accents of English differ primarily in their vowels (Wells, 1982), making the dynamics of

vowel quality in the Big Brother house of particular interest. Within a given variety of En-

glish, vowels differ in quality primarily in the first two formants (F1, F2), and secondarily

in duration, F3, and other parameters. We model variation in F1 and F2 only.

Three vowels are considered. Two correspond to the lexical sets GOOSE and STRUT,

using the notation of Wells (1982) for a vowel pronounced identically in a group of words

53. See Hazen (2011) for an example, and Santa Ana (1992) for a review up to that point.
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within a given dialect.54 The third corresponds to the lexical set for TRAP, augmented for

particular housemates to include all words which would have the same vowel as ‘trap’,

for reasons discussed below; we call this modified variable TRAP’.55 We will often use

“GOOSE” rather than “the GOOSE vowel” to refer to the vowel shared by words in the

GOOSE lexical set, and similarly for STRUT and TRAP’.

Variation in vowel formants is conditioned by many factors, most significantly char-

acteristics of the speaker, and the linguistic context.

4.4.3.1 Speaker factors

Within a dialect region, the formant frequencies corresponding to each vowel vary greatly

by speaker, due to physiological differences and social factors. Speaker gender has a

particularly large effect; for example, women have higher pitch than men, and have larger

vowel spaces (Simpson, 2009). However, significant variability remains between speakers

of the same sex from the same dialect region, for a variety of reasons (Hillenbrand et al.,

1995; Peterson and Barney, 1952). We will not explicitly model the effect of any by-speaker

factors on vowel formants for the Big Brother data, due to data sparsity. However, we will

model the (large) differences between speakers, which serve as a proxy.

How the vowel of each lexical set is realized (including F1 and F2) varies hugely across

English dialect regions. Table 4.3 summarizes the expected pronunciations of GOOSE,

STRUT, and TRAP’ in the dialect regions for each of the 12 speakers who are on the show

for at least 50 episodes (we are not considering the others in the vowel analyses; see

Sec. 5.2.4): Standard Southern British English (SSBE), Northern England, West Midlands,

Southern Wales, Southern Scotland, General American, and General Australian.

54. Wells defined each lexical set to represent a set of words whose vowels are pronounced identically in
each of two reference accents–RP and General American—though in general the actual vowel quality used
in each accent will differ. For example, three lexical sets are BATH, TRAP, and PALM. In GenAm ‘bath’ and
‘trap’ have the same vowel, which is different from the vowel in ‘palm’. In RP ‘bath’ and ‘palm’ have the
same vowel, which is different from the vowel in ‘trap’.

55. Note that this is no longer a lexical set, since it contains different words for different accents.
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Table 4.3: Expected pronunciations of GOOSE, STRUT, and TRAP’ in the dialect regions
represented by the 12 housemates present for at least 50 episodes. Sources: Beal (2004);
Clark (2004); Cox and Palethorpe (2007); Ferragne and Pellegrino (2010); Penhallurick
(2004); Stuart-Smith (2004); Watson (2007); Wells (1982).

GOOSE STRUT TRAP’

SSBE [u:]∼[0:] [2]∼[5] [æ]∼[a]
N. England [u:]∼[0:] [U] [a]
W. Midlands [u:]∼[0:] [U] [a]∼[æ]
S. Wales [u:]∼[0:] [2]∼[@] [a]
S. Scotland [0:] [2] [a]
USA [u:]∼[0:] [2] [æ]
Australia [0:] [5] [æ]

GOOSE GOOSE varies between [u:] and [0:] in the dialect regions considered here. In

some dialects (S. Scottish, Australian), [0:] has long been the norm. In many others,

GOOSE is fronting (increased F2, little change in F1); this is common for young RP speak-

ers (Hawkins and Midgley, 2005) and many American speakers (Labov et al., 2006). How-

ever, British dialects differ significantly in the extent of GOOSE-fronting, as reflected in a

recent comparison of formant frequencies in 13 dialects (Ferragne and Pellegrino, 2010).

STRUT The primary dialect divide in England is between Northern English and South-

ern English varieties. The merger of STRUT with FOOT, usually as [U], is one of the two

most characteristic features of Northern English accents, and is strongly socially marked

(Wells, 1982). In accents of the West Midlands (which lies on the isoglosses between

Northern and Southern English accents), FOOT and STRUT are variably merged (Clark,

2004). The two vowels have not merged in other dialect regions represented in our

dataset, and STRUT is realized as a lax vowel whose quality varies by dialect ([2]∼[5]∼[@]).

TRAP’ In the US and Australia TRAP’ it is typically a clearly-fronted [æ]. In the UK,

accents other than SSBE considered here tend to have the more central pronunciation [a].

Traditionally [æ] is used in SSBE, but Hawkins and Midgley (2005) found that younger
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SSBE speakers have dramatically shifted towards [a]. Thus, the pronunciation of TRAP’

separates British and non-British accents in our dataset.

4.4.3.2 Linguistic factors

Consonantal context Vowel formants are strongly affected by coarticulation: the posi-

tion of the articulators in producing a vowel is affected by nearby segments, which af-

fects the resonant frequencies of the vocal tract, and hence the formant frequencies. The

strongest coarticulatory effects come from the consonantal context (the identity of the

preceding and following consonants). Consonantal context is the only linguistic factor

controlled for in our models below, as an approximation of the total effect of coarticu-

lation with surrounding segments. Consonantal context effects also differ somewhat by

language and dialect. Two strands of studies, in the phonetic and sociolinguistic litera-

tures, have examined the effects of adjacent consonants on vowel formants.

A sizable literature in articulatory phonetics details the effects of adjacent consonants

on vowel formants in laboratory speech, in English and in other languages (see Steinlen,

2005). For English in particular, a seminal study by Stevens and House (1963) examined

vowel formants in symmetric CVC environments for American English speakers, where

C was one of 14 consonants (stops, fricatives, affricates) and V was one of eight vowels. In

another important American English study, Hillenbrand et al. (2001) considered C1VC2

syllables (symmetric and asymmetric) for the same eight vowels as Stevens and House,

with C1 and C2 one of the six stop consonants. Steinlen (2005) examined CVC syllables

for British English speakers, where C was a stop consonant and V was one of 11 vowels.

The general finding of these and other studies is that adjacent consonants strongly affect

vowel formants, in complex ways which vary by consonant/vowel pair. An adjacent

consonant’s place tends to affect vowel formants more than its manner, and the effects of

both manner and place differ by vowel quality, in particular for front versus back vowels.

Following voiced consonants tend to lower F1 relative to following voiceless consonants,
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but do not have much effect on F2.

The effects of other consonant classes, such as nasals, laterals, and rhotics, have also

been studied. For example, an adjacent nasal tends to strongly affect a vowel’s formants,

especially F1, because opening the velopharyngeal port introduces an extra pole-zero

pair into the vocal tract transfer function in the vicinity of F1 (Stevens, 2000). Nasal-

ized high/low vowels tend to have higher/lower F1 than their oral counterparts (Beddor,

1982).

Contextual effects on vowel formants have also been considered in the sociolinguistic

literature. The study of sound change in progress using instrumental measurements was

pioneered by Labov et al. (1972) in Philadelphia, and has resulted in a large literature on

changes in progress in different speech communities (Labov, 1994, 2000). Such studies

examine the ‘internal’ (linguistic) and ‘external’ (social) factors which condition variation

and change in a particular (set of) vowel(s) in a community, and it is often the case that

consonantal context is an important conditioning factors. Often it is the most important,

as for GOOSE-fronting: across different dialects, GOOSE is most fronted before coronals

and /j/, and least fronted before /l/ (e.g., Labov et al., 2006: Sec. 12.1; Fridland, 2008).

Other linguistic factors Vowel formants are affected by a host of other linguistic factors.

Particularly important are coarticulation with adjacent vowels (see references in Beddor

et al., 2002; Cole et al., 2010), syllable stress (e.g., Tiffany, 1959), and speaking rate (e.g.,

Gay, 1978). The overall shape of the vowel space is affected by stress and speaking rate,

with vowels in unstressed syllables or faster speech tending to be centralized relative to

vowels in stressed syllables or slower speech.
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CHAPTER 5

BIG BROTHER: DATA

5.1 Show description

The corpus consists of speech from the eighth season of the reality television show Big

Brother UK (Channel 4/Endemol), which aired from June 5 to September 5, 2008, for

a total of 93 days. Before describing the show, two caveats related to the nature of the

corpus merit discussion.

First, there is no reputable published source of information about the show or the

housemates. Much of the information in this and the following sections is based on the

extremely comprehensive Wikipedia pages for the 2008 season and for the broader fran-

chise of Big Brother UK (Wikipedia, 2012a,b). In constructing both the speech corpus and

a corpus of social interaction data (not discussed here) over two years, no one working

on the project found a contradiction between the Wikipedia pages and the actual show,

or anything housemates said. Nonetheless, the usual caveats about using Wikipedia as a

reference source apply.

A second point relates to the passage of time on the show. We are using Big Brother

as a “natural experiment” to study longitudinal variation. To do so, we measure pho-

netic variables in chunks of speech spoken at different times, and model the variables as

a function of time and static factors. This procedure implies we trust the show’s produc-

ers that speech broadcast on a certain day indeed comes from that day, and that speech

represented as continuous is indeed continuous. We have no reason to doubt either one, a

priori, especially since the show was broadcast every day. But we must bear in mind that

either could sometimes be false, especially the latter: reality television shows are notori-

ous for creative and subtle editing. We are also assuming that the speech broadcast from

each speaker is linguistically random, in the sense that any time dependence observed in

a housemate’s use of a variable (after controlling for static factors) is not due to choices
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made by the producers about what chunks of speech to present.1

5.1.1 Show structure

The show was structured as follows. Sixteen contestants (known as “housemates”) en-

tered the house on Day 1, and five more were added at various points in the season.

Housemates are gradually eliminated over the season, and the last one remaining wins a

£100,000 cash prize. Most housemates leave because they are evicted, usually by a two-

stage eviction process: each week, each housemate nominates two others for eviction,

and the viewing public votes on which of the two who received the most votes should be

evicted. There were a number of exceptions to this format during the show.2

During the season, housemates cannot leave the house, and do not interact with peo-

ple not involved with the show. They do not have access to television, radio, books,

music, or any other media, aside from when media are used as part of a house activity.

Thus, for the duration of the show housemates have essentially no linguistic input from

the outside world.3

Much of housemates’ waking hours are spent interacting in some form with each

other. (Even their sleep schedule is regulated, with sleeping during the day prohibited.)

The main draw of the Big Brother franchise is the opportunity to observe such social in-

teractions, both unstructured and structured. On the unstructured side, much of house-

mates’ time is spent simply sitting around and talking. They cook, clean, and eat meals

together. Many exercise regularly. On the structured side, housemates perform a series

1. For example, suppose Rex (a housemate) produces vowel formants differently in the morning than
in the evening, but otherwise does not change over time. If Rex’s clips for the first half of the season were
mostly from mornings, and later clips mostly from evenings, we might erroneously conclude he changed
over the season.

2. Five housemates remained on Day 93, and the winner was selected by the viewing public. Two
housemates were evicted for threatening behavior (without a public vote), and one housemate chose to
leave. Individual housemates were also sometimes automatically nominated or stripped of nominating
rights during a given week, for various reasons.

3. On a few occasions Big Brother provided housemates with letters or videos from family members as
a reward for some task.
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of tasks throughout the season, either individually or in teams. Big Brother provides

rewards and punishments based on performance in tasks.

Housemates can also go to the diary room, a room isolated from the rest of the house, to

speak with Big Brother. Big Brother is in fact different people in different clips, both male

and female, with a broad range of accents. Big Brother can see housemates, but cannot be

seen by them, and communicates only through audio. Housemates go to the diary room

to talk about events in the house, to vent about other housemates, to speak about their

feelings, to make requests, and so on. They can be called to the diary room to nominate

other housemates, to receive a message, for disciplinary purposes, or for Big Brother to

ask their opinion on events in the house or on other housemates. For reasons discussed

below, the corpus used in this study consists exclusively of speech from the diary room.

5.1.2 Housemates’ audio and video data

Housemates are recorded at all times in the house, both by cameras and microphones

present in most rooms, and by wearable microphones which housemates nearly always

have on. It is not clear how much of the audio broadcast during the show comes from

each of the two types of microphone, or what post-processing has been performed. But

in general the sound quality is very good, especially in the diary room.

During the season, the public could see recordings of housemates via a live feed or

daily produced episodes. The pay TV channel E4 showed a live feed for most of the day

for the duration of the season, consisting of footage from one camera at a time, broadcast

with a time delay to censor conversation about certain topics (e.g., persons outside the

house).4 The live feed did not show footage from the diary room. A daily one-hour

“highlights show” was shown on the public channel Channel 4. These produced episodes

consisted of continuous segments (usually 1-10 minutes) from the previous day in any

room of the house (including the diary room), presented without commentary.

4. The live feed was cut daily during the broadcast of “E4 Music”, but it is not clear for how long.

121



This broadcast setup provides the context for every utterance by a housemate. As

Thornborrow and Morris (2004: 248) note, unless in the diary room, “for the inmates of

the Big Brother house, ‘liveness’ provides a permanent context for any interaction that

takes place between them. Not all of their talk is broadcast live, of course, but any of it

could be.” In the diary room, a housemate knows that anything she says could be broad-

cast in the day’s produced episode.

Given this context, some caution is warranted about the ecological validity of house-

mates’ speech. We are interested in Big Brother as a natural experiment where we can

observe longitudinal variation within individuals. But how much our findings bear on

linguistic variation in the real world depends on a crucial question: to what extent are

housemates “acting naturally” and producing spontaneous speech, versus producing

monitored speech as part of a performance? Because housemates are constantly observed,

data from Big Brother entails an extreme version of Labov’s observer paradox: “to obtain

the data most important for linguistic theory, we have to observe how people speak when

they are not being observed” (Labov, 1972: 113).

What does this mean for housemates’ speech? On the one hand, housemates are aware

that they are being observed, and anything they say may be broadcast on television. On

the other hand, housemates also know that little of what they say will actually be broad-

cast on the live feed, and even less on a produced episode. It must also be kept in mind

that the Big Brother house becomes housemates’ world for three months. From our per-

spective, the hope is that housemates will forget they are being observed at least enough

to produce the same register of speech that they would outside the house.

Certainly, the overwhelming impression is that housemates’ speech is spontaneous

and conversational. It shows many characteristics of conversational speech, like exten-

sive segmental reduction. But there are certain situations where housemates can be much

more sure they will be broadcast—such as when nominating other housemates for evic-

tion, or taking part in tasks—and their speech in these situations sometimes seems more
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Table 5.1: Information on the 21 housemates of Big Brother 9 UK. “HM speech” refers to
the amount of speech from this housemate in the corpus. Housemates are listed in reverse
order of the day they left the house (winner first).

Housemate Sex Age Origin Country/Region Days DR clips HM speech

Rachel F 24 Torfaen Wales 1–93 40 30:10
Michael M 34 North Ayreshire S. Scotland 1–93 49 58:17
Sara F 27 Melbourne Australia 30–93 20 20:23
Rex M 24 London London 1–93 39 44:11
Darnell M 26 Missouri USA 1–93 42 46:56
Kathreya F 31 ?? Thailand 1–90 26 24:17
Mohamed M 25 ?? London/Somalia 1–90 35 30:41
Lisa F 40 Cheshire N. England 1–86 34 35:46
Nicole F 19 Surrey S. England 58–79 12 13:13
Stuart M 25 Greater Manchester N. England 16–72 18 19:58
Dale M 21 Merseyside N. England 1–65 29 23:17
Luke M 21 Greater Manchester N. England 1–58 28 39:03
Maysoon F ?? London London 30–56 4 2:34
Rebecca F 21 West Midlands Midlands 1–51 17 14:40
Belinda F 44 Devon S. England 30–44 4 4:56
Mario M 43 Cheshire N. England 1–37 8 8:08
Jennifer F 22 County Durham N. England 1–30 8 11:41
Sylvia F 22 ?? ??/Sierra Leone 1–23 3 4:58
Dennis M 24 Edinburgh S. Scotland 1–23 7 4:36
Alexandra F 23 Greater London London 1–14 11 17:46
Stephanie F 19 Liverpool N. England 1–9 5 3:23

Total 439 06:39:05

monitored. The speech considered here all comes from the diary room, which may lead

to it being more or less monitored. Diary room speech is often emotional, and emotional

speech tends to be more spontaneous. Also, housemates may speak more spontaneously

in the knowledge that diary room speech cannot be broadcast to the live feed. On the

other hand, they know it can be broadcast in a produced episode, and often is. In sum,

legitimate questions exist about the extent to which speech from Big Brother is “real”—as

is also true to some degree for any other situation where speakers are being knowingly

recorded (e.g., sociolinguistic interviews, ethnographic studies). We will consider house-

mates’ speech in the diary room to be at least spontaneous, and arguably conversational.
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5.1.3 Housemates

Table 5.1 gives information about each of the 21 housemates who took part in the show:

name, place(s) of origin, the length of time on the show, and amount of data in the corpus

(both in number of clips, and in amount of speech by the housemate). Knowing each

housemate’s personal background is important for understanding their accent. Unfortu-

nately, little information on housemates’ biographies is available beyond what is listed

online; however, this information at least seems to be accurate (see Sec. 5.1).

The housemates have very different accents, corresponding to their diverse geographic

origins and social backgrounds. Sixteen housemates are native speakers of British di-

alects, which seem to broadly correspond to their home regions.5 Belinda and Nicole

come from southern England, and have essentially Standard Southern British English

(SSBE) accents. Alexandra, Rex, and Maysoon come from London, but have relatively

different accents: Rex sounds the most ‘posh’ (closest to SSBE), while Alexandra has

many features associated with working-class speakers. Seven speakers come from north-

ern England, and all have accents which are immediately identifiable as Northern (e.g.,

merger of /U/ and /2/, distinctive prosodic patterns). Rebecca comes from the West Mid-

lands (Coventry) and has some features characteristic of this region. Dennis and Michael

come from southern Scotland, and have strong regional accents (Edinburgh, Ayrshire).

Rachel comes from southern Wales, and has a mild regional accent (e.g., [ø] for NURSE).

The backgrounds of the other housemates are less straightforward. Sara is Australian

and has a strong Australian accent, but has lived in London for several years. Darnell

was born in the UK, but was raised in the US (St. Louis), then was deported to the UK as

an adult. His accent is clearly American, with some minor African American Vernacular

English features (mostly in lexical choice). (He is African American and albinistic.) The

remaining three housemates have perceptibly non-native accents. Sylvia was born in

5. Note that although I have some familiarity with British dialectology, I do not command a British
dialect. The following remarks are my best guesses based on my knowledge of British dialects, and some
consultation with (non-linguist) British speakers.
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Sierra Leone, and moved to the UK at age 11; Mohamed was born in Somalia, and moved

to the UK with his family (age unknown). Both speak near-native English with relatively

light accents. Kathreya is a native Thai speaker who moved to the UK as an adult. Her

English is heavily accented and frequently ungrammatical. She is the only housemate

with a clearly non-native command of English.

5.2 Corpus description

The corpus consists of all segments from the produced episodes where a single housemate

is in the diary room, which we call diary room clips, or simply clips. There are 439 clips in

all, corresponding to a total of 6 hours and 39 minutes of housemate speech.6 The number

of clips and amount of speech for each housemate are shown in Table 5.1. The corpus is

highly unbalanced, with 30–60 minutes of speech for some housemates, and only a few

minutes for others. This is largely because different housemates are on the show for

different periods of time, but also because diary room clips for some housemates occur

more frequently than others. For example, Luke is on the show for only 60 days, but

there is more speech for him than for some housemates who were on the show for three

months. Audio quality for the diary room clips is generally very good, with the exception

of some background noise (often from housemates moving around), and there were very

few problems with performing phonetic measurements from spectra and waveforms.

The corpus is limited to diary room clips of single housemates for both practical and

scientific reasons. It was not feasible to transcribe more than a fraction of the speech con-

tained in the produced episodes (93 hours) given available resources, so we needed to

somehow limit the amount of speech considered. Since the primary goal of the study was

to examine longitudinal variation in individuals, we decided to consider only one type

of speech, of the many which occur in the corpus (conversations between housemates,

6. The actual total length of the clips is significantly longer, owing to speech from Big Brother, footage
of events outside the diary room, etc.
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speech during tasks, diary room speech, etc.), so that the type of interaction a housemate

was engaged in at different time points would be controlled for. Diary room speech was

a natural choice, since the diary room provides a constant recording environment and a

relatively constant social setting (compared to speech outside the diary room). Finally,

we decided not to consider diary room clips containing interactions between housemates.

Because the only interaction in the clips is with Big Brother, whose role is usually lim-

ited to brief questions or answers, the speech in the corpus is roughly comparable to the

type of spontaneous speech commonly elicited in sociolinguistic interviews. The corpus

allows us to examine how each housemate’s ‘baseline’ linguistic usage varies over time,

abstracting away from short-term shifts which may occur during conversation. This also

means that the corpus does not necessarily say anything about any changes in house-

mates’ speech when they are talking with each other. Exactly what can be concluded from

the corpus about longitudinal variation in individuals is discussed when we build dy-

namic models in Chapter 7.

5.2.1 Transcription

Each clip was orthographically transcribed in three stages. A preliminary transcription

was performed by seven undergraduate research assistants (three at the University of

Chicago, four at the Massachusetts Institute of Technology), none of whom had prior

experience with this corpus or with British dialects.7 Two of these RAs, Maria Nelson

and Natalie Rothfels, continued working on the project and became familiar with each

housemate’s speech. They performed a second pass, in which the original transcriptions

were corrected and made consistent. Finally, I reviewed and corrected all transcriptions.

Priority was given in transcription to representing as faithfully as possible what was

said in each segment of speech, with an eye towards forced alignment (Sec. 5.2.4.1), where

7. The Chicago transcribers were supervised by myself, and the MIT transcribers were supervised by
Peter Graff.
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the transcription would be transformed into a string of phones and aligned with the sig-

nal. Non-standard usage or lexical items were included, and non-lexical fragments of

speech were transcribed phonetically. Non-speech noises were segmented out from seg-

ments of speech, so that each transcribed interval consisted only of speech and silence.

5.2.2 Voice onset time

The VOT dataset consists of three types of annotation for each stop: a manual VOT mea-

surement, an automatic VOT measurement, and the values of predictors to be used in the

static and dynamic models.

Measurements A total of 6494 manual VOT measurements were performed by three

transcribers. The annotation procedure is described in Appendix A.1. Nineteen tokens

where it was unclear how to apply the measurement criteria were excluded.

The algorithm described in Chapter 3 was used to assign an automatic measurement

for each stop,. Recall that to produce a VOT measurement for a given stop, the algorithm

needs a classifier which has been trained on manually-labeled data, and the left boundary

for the stop’s host word, which specifies where the algorithm should begin looking for

the burst. The classifier trained in the BB base experiment (Sec. 3.5.1) was used, with

all the algorithm’s parameters set as in that experiment. For each stop, 50 ms before the

manually-annotated burst onset was taken to be the left word boundary. Note that, like in

all experiments presented in Chapter 3, we are taking the approximate location of the left

word boundary as given, rather than itself determined by an automatic procedure (such

as forced alignment to an orthographic transcript).

Predictors Information about following segments was determined from CELEX (Baayen

et al., 1996). The word associated with each token was defined orthographically (i.e., the

noun and verb forms of wind would be equivalent). The frequency of a word was defined
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as the frequency of the highest-frequency wordform in CELEX with the same spelling. A

word’s initial syllable was considered to be stressed if it was listed as having primary

stress in the CELEX primary pronunciation, and was not a function word: to, ’cause, can,

can’t, could, couldn’t, ’til, ’kay.

Speaking rate was determined by a more involved process. Each transcribed chunk

of speech was force-aligned with a sequence of phones corresponding to its canonical

pronunciation (see Sec. 5.2.4.1). The forced aligner also inserts silences for regions that

are not associated with a segment. Thus, after forced alignment, we have a predicted

beginning and end for each word in the transcription, and the locations of all silences. A

spurt of speech was defined as a sequence of words separated by a silence of 60 msec or

greater. The speaking rate within a spurt was defined as the number of syllables in the

canonical realization of its transcription, divided by the spurt’s duration. The speaking

rate predictor for each token was the rate for the spurt containing the VOT’s host word.

Outliers Outliers of two types were excluded. Tokens with extreme values of the depen-

dent variable (log(VOT), in our models) within a given speaker are likely to be overly in-

fluential when fitting models. Accordingly, for each speaker, all tokens whose manually-

measured log(VOT) was greater than three standard deviations from the mean were

excluded when building models of manually-measured VOTs. Tokens with manually-

measured VOT below 10 msec or above 250 msec were also excluded, as extreme values

across all speakers; these cutoffs were chosen by visual inspection of the distribution of

VOTs. An analogous procedure was followed for automatically-measured VOTs when

building models of automatically-measured VOTs. In total, 111 tokens (1.7%) were ex-

cluded for manual measurements and 85 tokens (1.3%) for automatic measurements.

Next, inspection of the speaking rate predictor showed that many speakers had a small

fraction of tokens with extreme rate values, relative to other tokens. Because speaking rate

was determined using a semi-automatic process (see above), it was thought that speaking
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Table 5.2: Descriptive statistics for each housemate’s VOT data. N and Nclip denote the
number of data points and the number of clips per housemate. “Mean VOT” is the aver-
age of each speaker’s mean VOT value for each word, in msec.

Speaker N Nclip Mean VOT

Stephanie 41 5 64.6
Maysoon 45 4 58.4
Sylvia 48 3 76.1
Belinda 74 4 63.0
Dennis 85 4 59.8
Mario 110 8 67.8
Rebecca 141 16 65.1
Stuart 185 17 72.0
Nicole 195 11 59.6
Jennifer 205 8 60.3
Sara 209 16 55.5
Kathreya 287 24 75.2
Dale 342 23 72.8
Rachel 343 34 68.7
Alexandra 348 10 61.3
Mohamed 380 28 43.8
Lisa 451 31 67.4
Darnell 536 36 51.0
Rex 597 38 55.4
Luke 632 28 41.1
Michael 786 44 68.9

rate outliers were largely due to errors in this process. Because speaking rate has a large

effect on VOT compared to other predictors, it was decided to exclude tokens where the

speaking rate predictor was probably in error, by the same criteria as used for log(VOT).

The final dataset consisted of 6494 tokens from nearly all clips (398 total) for all 21

housemates.8 Table 5.2 shows the distribution of tokens and clips among housemates.

8. A few clips were excluded whose annotation files were lost.
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Table 5.3: Descriptive statistics for each housemate’s CSD data. Asterisks denote British
housemates. N and Nclip denote the number of data points and the number of clips per
housemate. “Deletion rate” is the mean of the proportion of deleted tokens for all words
used by a housemate.

Housemate N Nclip Deletion rate

Michael* 777 41 0.41
Darnell 737 39 0.50
Rex* 587 28 0.51
Luke* 568 28 0.36
Lisa* 493 30 0.40
Rachel* 487 38 0.41
Nicole* 297 11 0.61
Dale* 293 24 0.32
Mohamed 289 24 0.60
Alexandra* 284 9 0.32
Sara 263 16 0.64
Stuart* 262 17 0.33
Jennifer* 261 8 0.52
Rebecca* 231 16 0.48
Mario* 117 8 0.42
Dennis* 98 5 0.37
Belinda* 64 4 0.43

5.2.3 Coronal stop deletion

The CSD dataset consists of three types of annotations for words in the corpus ending in

t/d-final consonant clusters: the host word’s CELEX wordform ID, the realization of the

final coronal, and the phonological context surrounding the final coronal. The annotation

process is described in Appendix A.2. We annotated every word ending in a t/d-final

cluster (with some exceptions, described below) in nearly all clips (388 total) from 17 of

the housemates, resulting in 6108 tokens.9 Table 5.3 shows the distribution of data points

and clips among housemates.

In studies of CSD, a number of processing steps are usually applied to the data before

9. A few clips were excluded whose annotation files were lost. Two housemates (corresponding to 8
clips) were not coded. One housemate who deletes near-categorically (Kathreya) was excluded. Kathreya
has a heavy Thai accent, and seems to produce very few word-final CC clusters. Because she behaves so
differently from other speakers, including her has an undue impact on the static models of CSD.
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building a statistical model. Two such steps are taken here, while others are not.

Steps taken The vast majority of studies on CSD treat realization as a binary variable:

the final coronal is present or not. This simplification belies the many ways a word-final

coronal can be realized, for example as a burst, a glottal stop, or completely absent. Re-

cent studies have begun to examine different surface realizations of /t/, with particular

attention to their social meanings., in both American and British varieties (e.g., Foulkes

et al., 2005; Levon, 2006; Podesva, 2006). However, there are two important reasons to

stick with a binary division. First, comparing results with most previous work (where

the binary division was used) is much easier. Second, modeling grouped data turns out

to be significantly harder for a multinomial response than for a binomial response. Thus,

we leave the exciting prospect of building a mixed-effects multinomial model of final

coronal realization to future work, and dichotomize the realization annotation into a bi-

nary response: absent versus present.10 Our dichotomization follows TT in treating any

unambiguous phonetic reflex of the underlying coronal as being its surface realization.11

We also follow TT in discarding all tokens whose final cluster is /rt/ or /rd/ in Amer-

ican English. Many housemates are speakers of non-rhotic varieties of English, where

/r/ does not occur in codas (e.g., in RP: start [stA:t], dear [dI@]), while others are speak-

ers of rhotic varieties (e.g., Australian, American English). Thus, for some housemates

words ending in /rt/ or /rd/ are subject to CSD, while for others they are not. Includ-

ing these words in the model would be problematic, because the predictors for preceding

phonological context would have different meanings for the two groups of speakers.

Steps not taken The practice in most studies of CSD is to discard several other types of

tokens which are not discarded here.

10. In terms of the labels we used in realization annotation (Appendix A.2), NONE, NONE BUT,
SHARED COR, and SHARED IDF counted as “absent”, and all other labels as “present”.

11. Note that TT discard all tokens before interdental fricatives or coronals, so our dichotomization is
slightly different.
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Some high-frequency words (especially and) are often excluded, because their deletion

rates can be near-categorical. Tokens in the “neutralizing contexts” of a following alveolar

consonant (/t/, /d/, sometimes also /s/ or /n/), where deletion rates can be very high,

are also typically excluded. The rationale in both cases is that CSD is so frequent as to no

longer be a variable process; also, fitting logistic regression models with near-categorical

cases can lead to problems with model identifiability (Guy, 1988; Tagliamonte, 2006: 86–

87). These cases show high, but not near-categorical deletion rates in the Big Brother data.

Our approach is to build a statistical model which allows for deletion rates specific to

particular words (via a by-word random intercept) and for a strong effect of “neutralizing

contexts” on deletion rate (via a fixed-effect predictor specifying whether the following

context is neutralizing), rather than discarding certain words and phonological contexts

a priori.12

It is also common practice to perform type/token sampling, where only a fixed num-

ber of data points for a given word per speaker are included, to restrict the potential

influence of any one lexical item (see Tagliamonte, 2006: 95–96). This concern is justi-

fied when performing a classic logistic regression, where only fixed effects are modeled,

as in the programs (VARBRUL or GOLDVARB) used to build logistic regression mod-

els in most CSD studies. Since the grouping of the data points by word is not modeled,

type/token sampling is carried out so that the data is balanced, and each word does not

have an influence on the model proportional to its frequency.13 This step is not necessary

for the mixed-effects models used here, where the grouping of data points by lexical item

is included in the model (as a random intercept). In general, mixed models are robust to

“unbalanced” data, where the distribution of tokens among different units in a grouping

level (e.g., different words) is very uneven.

12. To give an idea of the impact of leaving this data in, 41% of tokens in our dataset either are from the
word and or are followed by a word beginning with /t/ or /d/.

13. As noted by Tagliamonte and Baayen (2012), even this practice is potentially problematic: the non-
independence of data points for the same word is not being modeled, violating the independence assump-
tion of classic logistic regression.
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5.2.4 Vowel formants

The dataset consists only of tokens of GOOSE, STRUT, and TRAP from the 12 speakers who

were in the Big Brother house for 50 days or longer. These are the only speakers who

will be included in the dynamic analyses (for all variables) in the next chapter, essentially

because there is too little data for other speakers to assess time dependence. Also, unlike

the static models for VOT and coronal stop deletion, the static models for vowel formants

will serve largely as a preliminary step for the dynamic analyses. Thus, there is little point

to including speakers besides those included in the dynamic analyses.

We determined which vowels to consider as data from the GOOSE, STRUT, and TRAP

classes as follows. The automatic formant measurement suite described below uses CMU-

Dict, a widely-used electronic dictionary of American English;14 we thus used CMUDict

as the starting point for determining which words had vowels falling into a particular

class, after excluding non-lexical items (e.g., fillers, exclamations: um, uh, woo).

For GOOSE, all vowels marked as UW in CMUDict were included. For STRUT, all

marked as stressed AH in CMUDict were included, with the exception of vowels which

can be pronounced as both STRUT and LOT in British varieties.15

For TRAP’, some explanation is merited. We initially wanted to consider the BATH

lexical class, arguably the most socially salient in British dialects (Wells, 1982). BATH con-

sists of a few dozen words which are pronounced like TRAP in American English and

like PALM in SSBE. Unfortunately, because so few words are in this class, there turned

out not to be enough tokens in our dataset to examine longitudinal variation within in-

dividuals. We opted instead to consider TRAP, which at least varies in quality between

accents. Even then, there were not quite enough tokens to examine longitudinal varia-

tion for many individuals. So we finally chose to examine all vowels which were very

likely to be pronounced like ‘trap’ in a particular speaker’s dialect; this is the set of vowels

14. http://www.speech.cs.cmu.edu/cgi-bin/cmudict/

15. The STRUT vowel in what, was, from, of, hovel, somebody, anybody, nobody, everybody.
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we are calling TRAP’. We used a conservative procedure, using the lists of BATH words

given by Wells (1982) and in a recent educational web site by the British Library (2007), to

determine which words beyond TRAP were in TRAP’ for a particular speaker.16

5.2.4.1 Formant measurement

For each token in the GOOSE, STRUT or TRAP’ classes, we obtained F1 and F2 measure-

ments using an automatic method, followed by several post-processing steps.17

Automatic formant measurement was performed using the FAVE program suite devel-

oped at the University of Pennsylvania (Rosenfelder et al., 2011). FAVE takes as input

audio files and their orthographic transcriptions, and works in two steps.

First, each transcribed file is aligned with a sequence of phones corresponding to its

canonical pronunciation in a reference dictionary, a procedure called forced alignment.

FAVE uses a HMM-based aligner built using the HTK toolkit,18 with acoustic models

(probabilistic models of how each phone can be pronounced) for the American English

phone set from CMUDict, trained on American English speech. CMUDict is used as

the reference dictionary to determine possible pronunciations for each word in an ortho-

graphic transcription. We augmented CMUDict with American English pronunciations

for all words in our corpus that are not in CMUDict, as well as pronunciations for all seg-

ments of speech which were not full words (false starts, etc.); we then aligned each DR

clip in our corpus with its transcription, resulting in a predicted start and end time for

each phone in the sequence of phones implied by the transcription.19

16. That is, we attempted to minimize words marked TRAP’ which in fact had the PALM vowel.

17. This process was carried out by myself and Rachel Hwang, an undergraduate research assistant.

18. http://htk.eng.cam.ac.uk/

19. Note that we are using an aligner trained on American English speech, and that uses an American
English dictionary. This mismatch turns out to not be problematic for our purposes, since the aligner still
determines vowel boundaries accurately, and there is usually a one-to-one correspondence between vow-
els in British and American varieties (with the exception of vowels followed by /r/ codas in American
English).
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Next, automatic formant measurement is performed for all vowels in each audio file,

using the predicted start and end time for each vowel from forced alignment. FAVE in-

cludes a range of configuration options for automatic measurements. Under the options

we used, measurement is performed as follows. For a given audio file, the LPC-based

Burg method in Praat (Boersma and Weenink, 2011) is used to compute formant tracks

corresponding to 3, 4, 5, and 6 formants, for the whole file. To avoid measuring reduced

vowels, only vowels with duration of at least 50 msec are considered. For each vowel,

choosing values for F1, F2, and F3 requires choosing at what point in the vowel to sam-

ple the formant tracks, and which format track to associate with which formant. First,

a measurement point is chosen using the faav method.20 The question is now which

number of formants to use, and which formant tracks correspond to F1, F2, and F3. Using

the method of Evanini et al. (2009), the choice of F1, F2, and F3 is made that minimizes

the Mahalanobis distance from the distribution of the vowel’s label, using a multivariate

normal distribution based on all instances of that vowel in the Atlas of North American

English (Labov et al., 2006). Finally, the distribution for each vowel label is re-computed

based on the speaker’s estimated formant values for all instances of that label in the au-

dio file, and the formant values are re-estimated using the minimum-distance method,

but now using the re-computed distributions.

Reduced vowel exclusion and outlier correction When studying vowel formants, to-

kens that are clearly reduced (i.e., neutralized to [@]) are normally not of interest; thus, a

common practice when manually measuring formants is to exclude heavily-reduced to-

kens. When automatically measuring formants, it is not known a priori whether each to-

ken is reduced or not. We took several steps to avoid reduced tokens. The first, excluding

vowels with duration of <50ms, was mentioned above. Because reduction is more likely

20. Formants are measured at one-third of the vowel’s duration, with a few exceptions: PRICE and FACE
are measured at the maximum F1 value (on the F1 track for the vowel), GOAT and MOUTH halfway between
the maximum F1 value and the beginning of the vowel, and GOOSE is measured at the beginning of the
vowel when preceded by a coronal consonant.
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for (phonologically) short vowels, unstressed vowels, and high-frequency words, we also

excluded all unstressed tokens (according to the CMUDict transcription), and for the two

short vowel variables STRUT and TRAP’, we excluded tokens from a list of high-frequency

words.21 These steps make for a highly-conservative procedure, which is partially re-

sponsible for the relatively small number of tokens per vowel in the final dataset. Future

work will refine this procedure, to reduce the number of unreduced discarded tokens.

Finally, a subset of the automatic measurements were manually corrected. Some

highly inaccurate measurements remained despite the involved forced alignment and for-

mant measurement procedures, usually because the wrong formant tracks were chosen as

F1, F2, and F3.22 For each vowel for each speaker, we visually determined possible mis-

measured tokens by plotting all tokens with a superimposed 80% confidence ellipse. We

were conservative (i.e., selecting many tokens that were probably correctly measured) in

selecting tokens for re-measurement, and discarded all tokens where the suspect formant

values were due to very high pitch, screaming, a reduced or deleted vowel, or speech

which was otherwise unusual. For other tokens we manually re-measured formants only

when the automatic measurements were at least 50–100 Hz off.

Vowel normalization Finally, because we are interested in comparing formants across

different speakers, we performed vowel normalization to control for physiological differ-

ences. Adank et al. (2004) find that the best-performing vowel normalization procedure

(in terms of a discriminant analysis of Dutch vowels following normalization) is Lobanov

normalization (Lobanov, 1971); each speaker’s jth formant is scaled by subtracting its mean

and dividing by its standard deviation (both across all the speaker’s tokens). We always

use Lobanov-normalized formants below, written simply as F1 and F2.

21. Namely: the, but, of, to, do a, am, an, and, as, at, has, have, nah, than, that, that’s.

22. Secondarily, because of an incorrect measurement point, inaccurate force-aligned phone boundaries,
or reduced tokens which were not caught.
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Table 5.4: Number of tokens for each housemate for each of the three vocalic variables.

Housemate GOOSE STRUT TRAP’

Dale 79 90 57
Darnell 207 248 273
Kathreya 112 164 95
Lisa 136 192 150
Luke 186 220 204
Michael 193 379 337
Mohamed 108 123 57
Rachel 135 165 95
Rebecca 31 36 70
Rex 247 263 123
Sara 50 128 113
Stuart 58 74 64

Total 1542 2082 1638

5.2.4.2 Empirical data

The final dataset contains 1542 tokens for GOOSE, 2082 tokens for STRUT, and 1638 tokens

for TRAP’. Table 5.4 shows the distribution of tokens among the 12 housemates. As a qual-

ity check of the formant data, we verify that speakers’ formants for each vowel pattern as

expected, given their dialect regions (see Sec. 4.4.3.1).

GOOSE Fig. 5.1 shows F1/F2 plots for GOOSE. The one clearly L2 speaker, Kathreya, has

a proper high back rounded vowel, which is characteristic of her L1 (Thai; Tingsabadh

and Abramson, 1993). All other speakers show various degrees of fronting, as expected

given that GOOSE-fronting is occurring in many varieties of English. GOOSE is particularly

fronted for Michael, Dale, and Rex. Michael is from Scotland, where the fronted variant

is standard.23 Dale is from near Liverpool, and Rex is a young speaker of SSBE; recent

work suggests that the fronted variant is expected for both (Ferragne and Pellegrino, 2010;

Hawkins and Midgley, 2005).

23. However, it is also standard in Australia, where Sara is from, and she shows somewhat less fronting.
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Figure 5.1: Lobanov-normalized F1 and F2 for GOOSE (red dots) vowel tokens for each
speaker, with ellipses containing 80% of tokens.
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Figure 5.2: Lobanov-normalized F1 and F2 for FOOT (blue triangles) and STRUT (red dots)
vowel tokens for each speaker, with ellipses containing 80% of tokens.
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Figure 5.3: Mean Lobanov-normalized F1 and F2 for each speaker for TRAP’. Color indi-
cates speaker’s country of origin. Housemates range from [a] (Michael) to [æ] (Darnell).

STRUT Fig. 5.2 shows each speaker’s tokens for STRUT, with tokens for FOOT plotted

as well to show the amount of overlap between the two. Recall that the FOOT/STRUT

merger is a paradigmatic feature of Northern English accents. Among the 12 housemates,

Dale, Lisa, Luke, and Stuart are from Northern England. They are the housemates with

the greatest overlap between the two categories, as expected. Rebecca also shows some

overlap, as expected from her dialect region (West Midlands), which overlaps with the

isogloss for the merger.

TRAP’ For TRAP’, differences between housemates are best visualized by plotting mean

TRAP’ realizations in the F1/F2 plane (Fig. 5.3). Housemates vary roughly along a line

from [æ] (upper left) to [a] (lower right). There is a clear division between housemates

with native British accents and housemates with other accents, as expected from Table

4.3: British speakers are closer to [a]. Darnell has a clear [æ], as expected for a General

American accent. With one exception (Stuart), British speakers from regions where [a] is

expected (Luke, Michael, Rachel, Lisa, Dale, Stuart) are closer to [a] than British speakers

from regions where both [æ] and [a] are used (Rex, Rebecca).
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CHAPTER 6

BIG BROTHER: STATIC MODELS

We now turn to modeling phonetic variation in the Big Brother house. This chapter devel-

ops static models of synchronic variation for each of the five variables, without taking time

into account, and discusses their results with respect to previous work. The next chapter

describes dynamic models of longitudinal variation in each variable within individuals.

Motivation A first motivation for building static models is as an important preliminary

step for the dynamic models. There is tremendous synchronic variation in how segments

are realized at a given time by an individual, as a function of static factors (linguistic

context, social factors, etc.) Each of our phonetic variables is a property of individual

segments. Thus, there are many reasons why a variable might take on different values

at different times, simply because of what is being said and who is saying it.1 We are

interested in what time dependence remains in a housemate’s use of a variable after con-

trolling for static factors. Modeling synchronic variation in the variable across all speakers

is a logical first step, to understand what static factors need to be controlled for.

A second motivation is that the static models are interesting case studies of phonetic

variation in spontaneous speech in their own right. The models for VOT and CSD in

particular yield interesting and surprising findings with respect to previous work.

Most of what is known about VOT comes from laboratory studies of planned speech,

where the effects of a small set of factors are precisely determined, with all others held

constant (see Sec. 4.4.1). Studying VOT variation in spontaneous speech corpora is im-

portant for understanding to what extent the results of these studies carry over to speech

1. c.f. Prince (1987: 83), in an early study of dialect shift in individuals: “[dialect shift] turns out to be
amenable to study, as a special case of stylistic variation. That is, dialect shift may be construed as a change
in the pattern of stylistic variation over time, for each relevant variable, where normal factors affecting such
variation are controlled.”
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in the wild.2 In addition, corpus studies of VOT are needed to examine the relative im-

portance of the conditioning factors found in laboratory studies, how much these factors

vary by speaker, and how much of the VOT variation in continuous speech is predictable.

Two small previous corpus studies reached intriguing conclusions relative to laboratory

studies on these points, suggesting that more are needed (see Sec. 4.4.1).

Most studies of CSD have examined North American varieties (see Sec. 4.4.2). In par-

ticular, there have been two studies of British speakers, by Tagliamonte and Temple (2005)

and Smith et al. (2009), abbreviated TT and Smith et al. One contribution of our static

models of CSD is simply to contribute another study of British speakers, albeit in our case

from very different dialect regions. We also replicate a surprising finding of TT on mor-

phological conditioning of CSD which conflicts with studies on North American varieties.

Finally, a number of methodological points come up that are relevant to the interpretation

of previous work, and for the design of future studies.

6.1 Voice onset time

Two models were built for the dataset described in Sec. 5.2.2, one using manually-measured

VOTs and one using automatically-measured VOTs, which we call the manual model and

the automatic model. The models were fit to the manual dataset and automatic dataset, which

(besides the type of measurement) differ only in which tokens were excluded as outliers.

In each model, the (natural) logarithm of VOT was modeled using a linear mixed-

effects regression model with random effects for speakers and words, of the form dis-

cussed in Sec. 2.2.1.2. log(VOT) was modeled because VOT can only be positive (for

English voiceless stops). Models were fit in R using lmer() in the lme4 package.

2. For example, studies where VOT in different registers are compared have found that the difference in
VOT between voiced and voiceless stops decreases in conversational speech; thus, VOT is a less reliable cue
to stop voicing in natural speech than would be thought from laboratory experiments. It could turn out to
be the case that some of the smaller VOT differences observed in lab speech, for example between stressed
and unstressed syllables, simply wash out in conversational speech.
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Table 6.1: Input variables for the VOT static models.

Predictor Type

Speaking rate continuous
Following vowel factor (high, non-high)
Place of articulation factor (/p/, /t/, /k/)
Stress factor (stressed, unstressed)
Following segment type factor (vowel, sonorant)
Frequency continuous
Speaker gender factor (male, female)

The models’ predictors are based on seven input variables (Table 6.1). Speaking rate

was log-transformed because it can only take on positive values.3 Following common

practice, frequency was log-transformed due to the highly-skewed frequency distribution

of words, so that the predictor included in the model (log-transformed frequency) will

have an approximately normal distribution.

Several steps were taken to minimize collinearity. The two continuous predictors were

centered (following a log transformation). Each two-level factor was converted to a nu-

merical predictor, then centered. Place of articulation was Helmert-coded, such that the

two resulting predictors correspond to the difference between /p/ and the mean of /t/

and /k/ (predictor 1), and between /t/ and /k/ (predictor 2).

The models include a fixed-effect predictor for the main effect of each input variable,

to model the effect of each input on VOT. They also include two fixed predictors for the

interaction between place of articulation and the following vowel, to model lengthened

VOT for /t/ before high vowels (an effect observed during annotation).

The models also include a by-speaker random slope for each fixed effect predictor, to

account for variation in the effect of each predictor across different speakers. By-speaker

3. Note that we are only including overall speaking rate as a predictor, without regard to between-subject
differences in speaking rate. Another possibility is to include an additional predictor, the subject’s mean
speaking rate. In general, including both within-group and between-group predictors is recommended for
variables for which different groups have different mean values (Snijders and Bosker, 2011: Sec. 4.6). In
our case, adding a fixed-effect predictor for a speaker’s mean rate did not change either model’s qualitative
results, and the predictor’s fixed-effect coefficient was not significant.
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and by-word random intercepts are also included, to allow for speaker-specific and word-

specific adjustments in VOT. No correlations between random effect terms are included.

The resulting models predict a token’s VOT as a function of terms for the speaker,

the host word, and the surrounding spurt. The speaker’s term is their own mean VOT,

in part determined by their gender. The word’s term comes from the word’s own mean

VOT, in part determined by the place of articulation of its initial stop consonant, which

segments follow the initial stop, the word’s frequency, and the word’s stress pattern; the

exact effect of these factors varies by speaker. The last term comes from the speaking rate

of the surrounding spurt, and this effect also varies by speaker.

6.1.1 Diagnostics and goodness of fit

Normality of residuals: In an initial fit of each model the distribution of residuals was highly

non-normal. Tokens with residuals more than 2.5 standard deviations from the mean

were trimmed from each dataset, comprising 2.3% of the data for each dataset. On re-

fitting, both models had residuals much closer to normality.

Multicollinearity among fixed-effect predictors: All correlations between fixed effects are

small for both models (|r| ≤ .19), suggesting that no two predictors are correlated. The

condition number of the model matrix for the dataset corresponding to the 11 predictors

included in each model was κ = 6.0, indicating very little collinearity in the full set of

predictors.

Goodness of fit: As discussed in Sec. 2.2.4, there is no single good measure of model

quality for linear mixed models. The option used here is R2, defined in terms of model

likelihood relative to a base model with only an intercept term (Eq. (2.4)). In our case,

R2 = .491 for the manual model and .451 for the automatic model.
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Table 6.2: Summary of fixed effects in the model of manual (top) and automatic (bot-
tom) VOT measurements: coefficient estimates β̂, standard errors, corresponding t-values
(β̂/se(β̂)), and empirical MCMC p-values.

Predictor β̂ s.e.(β̂) t pMCMC

Intercept 4.0650 0.0372 109.27 0.0001
Speaking rate −0.0957 0.0090 −10.63 0.0001
Following high V 0.0270 0.0111 2.43 0.0126
POA (p vs. t/k) 0.1047 0.0117 8.95 0.0001
POA (t vs. k) −0.1042 0.0238 −4.38 0.0001
Stressed 0.0718 0.0120 5.98 0.0001
Following C 0.0847 0.0102 8.30 0.0001
Frequency −0.0537 0.0097 −5.54 0.0001
Male speaker −0.0486 0.0371 −1.31 0.1528
Following high:POA (1) 0.0251 0.0074 3.39 0.0001
Following high:POA (2) −0.0214 0.0117 −1.83 0.0340

Predictor β̂ s.e.(β̂) t pMCMC

Intercept 4.1003 0.0365 112.34 0.0001
Speaking rate −0.0851 0.0104 −8.18 0.0001
Following high V 0.0428 0.0122 3.51 0.0004
POA (p vs. t/k) 0.0872 0.0119 7.33 0.0001
POA (t vs. k) −0.1062 0.0218 −4.87 0.0001
Stressed 0.0312 0.0142 2.20 0.0520
Following C 0.0796 0.0117 6.80 0.0001
Frequency −0.0616 0.0114 −5.40 0.0001
Male speaker −0.0780 0.0360 −2.17 0.0334
Following high:POA (1) 0.0145 0.0083 1.75 0.0234
Following high:POA (2) −0.0236 0.0137 −1.72 0.0306

6.1.2 Results

Fixed effects Table 6.2 shows each model’s estimate for each fixed-effect coefficient,

with its standard error, t-statistic, and significance. Significances are the empirical p-

values obtained by sampling from the posterior of the model parameters (see Sec. 2.2.3).

Each coefficient can be interpreted as a predicted change in log(VOT); equivalently, the

exponential of a coefficient gives a predicted percentage increase in VOT.

The intercept is of course highly significant in both models, and corresponds to a VOT

of 58.3 msec (= exp(4.065)) in the manual model and 60.3 msec in the automatic model.
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Because all predictors have been centered, the intercept can be roughly thought of as an

average VOT: the predicted VOT when all other predictors are held at their mean values.

There is a large and highly significant effect of speaking rate. An decrease of 2 stan-

dard deviations in speaking rate is predicted to increase VOT by 21.0% (= exp(2 · .0957))

for the manual model and by 18.5% for the automatic model. Both models predict a

large and significant place of articulation effect. The first fixed-effect coefficient indicates

that the VOT for /t/ and /k/ is predicted to be 36.9%/29.8% higher than for /p/ (man-

ual/automatic model). The second coefficient indicates that VOT for /t/ is predicted to

be 23.1%/23.6% higher than /k/ (manual/automatic model). Recall that the usual order-

ing is /p/≤/t/≤/k/, so predicting /t/ to have higher VOT than /k/ is unexpected. The

place of articulation effect is the models’ most surprising prediction, and is discussed in

more detail below.

The effect of a following high vowel is significant in the manual model and highly

significant in the automatic model, corresponding to increases of 6.3% and 10.3% in VOT

relative to a following non-high vowel. There is a significant interaction of the height of

the following vowel with POA in both models, which is perhaps best described by exam-

ining the model predictions. Fig. 6.1 shows the automatic model’s predictions for each

POA:Vowel height combination (across 100 posterior draws); the manual model’s predic-

tions are similar. It is visually clear that a following high vowel increases VOT markedly

for /t/, and has little effect on VOT for /p/ and /k/. This confirms the suspicion, that

VOT was higher for /t/ before high vowels, which motivated including a POA:Vowel

height interaction in the models.

Stressed syllables are predicted to have 19.3%/7.9% longer VOTs in the manual/automatic

models, relative to unstressed syllables. The effect is highly significant in the manual

model, and nearly reaches significance in the automatic model (p = 0.052). Following

segment type and word frequency have highly significant effects in both models. In the

manual/automatic model, VOT is predicted to be 21.0%/19.6% longer in a stop preced-
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Table 6.3: Effects of dropping different sets of random effect terms from the VOT model.
Top group: all random slopes corresponding to each input variable. Bottom group: ran-
dom intercepts for Speaker and Word.

Predictor χ2 df Pr(>χ2)

Speaking rate 14.0 1 < 0.0001
High vowel (+ POA interaction) 12.4 3 0.006
Place of articulation (+ High V interaction) 188.3 4 < 0.0001
High vowel:POA 5.2 2 0.073
Stress 26.6 1 < 0.0001
Following segment 1.0 1 0.329
Frequency 4.1 1 0.044

Speaker (intercept) 350.9 1 < 0.0001
Word (intercept) 203.7 1 < 0.0001

ing a sonorant (/l/, /r/, /w/, /j/) than in a stop preceding a vowel, and a decrease of 2

standard deviations in word frequency is predicted to increase VOT by 11.3%/12.9% .

Finally, an effect of gender in the same direction is predicted in both models; it is

significant in the automatic model (p = 0.033), but does not reach significance (p = 0.15) in

the manual model. Women are predicted to have higher VOT than men by 10.0%/16.6%

in the manual/automatic model.

The estimated population-level effects for the two models are thus broadly similar.

All variables have the same qualitative effect on VOT in both models. Most have similar

significances as well, but two (stress and gender) do not. Because the models’ predictions

are so similar, from here on we only discuss the automatic model’s results, for simplicity.

Random effects To get a sense of how important different random effect terms are to the

model, we can compare models with and without particular terms (see Sec. 2.2.3). Table

6.3 shows the effect of dropping different sets of random effect terms from the model.

Each row corresponds to a test of the hypothesis that one set of random effects has no

effect. (For example, the first row summarizes a test of the hypothesis that the slope for

speaking rate does not differ between subjects.)
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The by-speaker intercept makes a highly significant contribution to the model (row 8

of Table 6.3), indicating that speakers differ in their baseline VOT values, after accounting

for other factors. The predicted standard deviation of speakers’ intercepts is σ̂s = 0.155,

meaning that very high-VOT speakers are predicted to have VOT 85.9% higher than

very low-VOT speakers (2 s.d. above/below the mean, respectively). The significant

by-speaker intercept agrees with Allen et al. (2003), who found that American English

speakers differed in their baseline VOT values for single-word productions, after control-

ling for speaking rate. Allen et al. do not report a model parameter describing how much

speakers vary, but do report the adjusted VOT values predicted by their model. The stan-

dard deviation of the log of these values is 0.093, which can be compared to our model’s

σ̂s = 0.155. The 95% highest posterior density interval for σ̂s is (0.103,0.197), which does

not include 0.093. Thus, we can say with some confidence that speakers differ in VOT

more in our dataset than in Allen et al.’s, perhaps because speakers’ native dialects might

differ in VOT values, British speakers might differ more than Americans, or speakers

might differ more in conversational speech than in laboratory speech.

The by-speaker random slope for speaking rate also significantly contributes to the

model (row 1 of Table 6.3), indicating that speakers differ in the effect of speaking rate

(syllables/second) on VOT. The predicted standard deviation is σ̂rate = 0.036, and speak-

ers in the dataset have predicted slopes between -0.132 and -0.019. Thus, for all speak-

ers VOT decreases as rate increases. The significant random slope for rate agrees with

Theodore et al. (2009), who also found that by-speaker differences in speaking rate (Amer-

ican English speakers, single word laboratory productions). Quantitative comparison of

the spread of slopes predicted by our model with Theodore et al.’s results is not possible

because they use a different measure of speaking rate (duration of the following vowel).

However, they also find that all speakers’ slopes have the same sign.

The random slopes involving place of articulation make a highly significant contribu-

tion to the model, indicating that speakers differ in the effect of POA (and its interaction
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with the following vowel’s height) on VOT (row 3 of Table 6.3). The significance of the

random slopes for POA contrasts with Theodore et al. (2009), who found that speakers

did not differ in the POA effect—specifically, the difference between VOT for /p/ and

/k/. The contrast is magnified by the fact that the random slopes involving POA make

a highly significant contribution to our model compared to other random slopes, and are

not even close to significance for Theodore et al.. A possible explanation for the discrep-

ancy, discussed further below, is that dialects of English differ in the POA effect, so the

poly-dialectal speakers in our sample would as well.

The by-word random intercept makes a highly significant contribution to the model

(row 9 of Table 6.3), suggesting that words differ in their intrinsic VOT values after con-

trolling for other factors. The predicted standard deviation of the words’ intercepts is

σ̂w = 0.142, meaning that a very high-VOT word is predicted to have VOT 76.4% higher

than a very low-VOT word (2 s.d. above/below the mean).

The random slopes for following vowel height and its interaction with POA make

a highly significant contribution to the model (row 2 of Table 6.3). The predicted slope

for following vowel height has the same sign for all speakers, so differences between

speakers do not change the direction of the effect following high vowel on VOT. The

POA:Vowel height interaction also differs by speaker, but is not discussed further.

Speakers also differ in their slopes for frequency (row 7 of Table 6.3), though the effect

is barely significant. Lower VOT for higher frequency words is predicted for all speakers;

they differ only in the magnitude of the effect.

Finally, speakers differ significantly in their slopes for stress (row 5). The model pre-

dicts longer VOT in stressed than in unstressed syllables for 18 speakers, and the opposite

pattern for three speakers. There are no significant differences between speakers in the

effect of following segment type.
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Figure 6.1: Predicted VOT by place of articulation and height of following vowel, for 100
draws of model parameters from their posterior distribution.

6.1.3 Discussion

Several aspects of the model are interesting with respect to previous work: the unexpected

place of articulation effect, the relative effect of different predictors, and the total amount

of VOT variation predicted by the model.

Place of articulation The most unexpected aspect of the model given previous work is

the place of articulation effect. In many previous studies of English (primarily American

English) and other languages, the effect of POA on VOT has been found to be consistent

with the ordering /p/≤/t/≤/k/. In contrast, our model predicts /p/</k/</t/. Before

discussing the meaning of this finding, we will check that it could not be due to uncer-

tainty in the model’s predictions, or to particular speakers with anomalous POA effects.

To quantify uncertainty in the model’s predictions, we sample 100 times from the pos-

terior distribution of the model parameters (see Sec. 2.2.3). Each draw gives a value for

each model parameter. The values for the fixed effect coefficients can be used to obtain

the predicted VOT values for /p/, /t/, and /k/ before a high or non-high following

vowel (six numbers). The variability seen in these predictions indicates the uncertainty
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in the model’s predicted population-level POA effect. Fig. 6.1 plots the predicted values

for each draw. There is clearly significant variability in each of the six predictions, per-

haps 10-20 ms for each. But there is little uncertainty about the direction of the POA effect:

/p/</k/</t/ is predicted for each draw, regardless of the following vowel’s height.

The same sampled model parameters can be used to examine uncertainty in the pre-

dictions of individual housemates, and to give a sense of whether a subset of house-

mates is responsible for the population-level POA effect. Fig. 6.2 shows the percentage

of posterior draws where each possible POA order is predicted, for each housemate. In

this figure, the closer to 100 a housemate’s bar is for order x, the more confidently we

can say that housemate’s predicted effect “is x.” For the majority of speakers, the pre-

dicted pattern is /p/</k/</t/. For some speakers (Belinda, Dennis, Jennifer, Rex), a

non-trivial minority of draws give /p/</t/</k/, so we might say the predicted order

is /p/</t/=/k/. Similarly, the predicted order for Michael is also /p/</t/=/k/ and

the predicted order for Kathreya is /p/=/t/</k/. Thus, the majority of speakers show

the same unexpected pattern (/p/</k/</t/) as the fixed effect, none show the expected

pattern (/p/</t/</k/) and we can be confident that the model’s population-level pre-

diction is not due to a small number of speakers. Also, for most housemates there is

relatively little uncertainty in the predicted POA effect, suggesting that the model’s qual-

itative prediction for the effect of POA would not change with more data.

With some confidence in the /p/</k/</t/ effect, what should we make of it? Al-

though this pattern is unexpected given previous work on VOT, it is not unattested:

one language in Cho and Ladefoged’s survey of VOT in 18 languages has markedly

higher VOT for alveolar stops than for other places of articulation (bilabial, dental, ve-

lar).4 In some studies of VOT in English, some individual speakers robustly show the

/p/</k/</t/ ordering (e.g., Suomi, 1980: 69). And at least one study of VOT in British

4. However, note that Cho and Ladefoged treat the alveolar stops in this language (Dahalo) as an
anomaly because they are possibly affricated.
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Figure 6.2: Percentage of draws with each ordering of predicted VOT by place of artic-
ulation, for 100 draws of model parameters from their posterior distribution. “Other”
denotes /t/</k/</p/, /k/</p/</t/, or /k/</t/</p/.
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dialects show a /p/</k/</t/ ordering in empirical mean values: in their study of adults

in Sheffield (Northern England), Whiteside and Irving (1997) reported 37/69/56 msec for

men and 53/78/66 msec for women. One possibility is that at least some British dialects

have this marked ordering as part of their language-specific phonetics. In a similar vein,

Docherty (1992: 139), in the most comprehensive study to date of VOT in standard British

English (RP), suggests a language-specific VOT effect of /p/</t/=/k/. Because speak-

ers in our dataset represent a variety of dialects, more work would be needed to determine

if the POA effect observed here is a property of particular British dialects. Interestingly,

recent work in British sociophonetics (discussed above) suggests that the VOT ranges

used for different sets of stops varies greatly between British dialects, at least in Scotland

and on the Scottish-English border, and may be related to social factors (Docherty et al.,

2011; Scobbie, 2006; Watt and Yurkova, 2007). Our dataset may support the hypothesis

that VOT is a particularly labile phonetic cue across the UK.

Comparing predictors Studying VOT in a corpus allows us to compare the effects of

different factors on VOT, and assess how the model’s predictions fit with the experimental

literature.

Fixed effects: From the discussion above, we have some sense of the relative strength

of different predictors, in terms of the percentage change in VOT that results from chang-

ing each one. Speaking rate and POA have the largest effects, followed by the following

segment type and gender, followed by word frequency, the following vowel’s height, and

syllable stress. Speaking rate and POA are the factors that have been considered to have

the largest effects in the experimental literature, so it is reassuring to see that they also

have the largest effect when many other factors are considered. The weakness of the fol-

lowing vowel height effect may be related to the general uncertainty in the experimental

literature on exactly which following vowels lead to higher VOTs. The small gender effect

agrees with some previous work where women are found to have slightly higher VOT.
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To our knowledge this is the first study to find an effect of gender on VOT when speak-

ing rate is controlled for. However, we should perhaps not have much confidence in this

effect, given that it was not significant in the manual model.

Random effects: From the discussion above of Table 6.3, we have a sense of the relative

importance of different random effect terms to the model. First, consider the by-speaker

and by-word random intercepts. That VOT varies between speakers replicates previous

findings, while the finding that VOT varies between words is novel. The model pre-

dicts large differences between speakers and between words, meaning there is significant

variation in VOT left to account for at the level of speakers and words. Further work

is needed to determine whether this variation corresponds to random noise, or is some-

how structured. The high by-speaker variation could mean speakers differ arbitrarily,

opening the possibility (raised by Allen et al., 2003) that VOT could be used as an in-

dexical feature by listeners to help perform speaker identification. On the other hand, it

could be the case that by-speaker VOT differences are predictable, and we have not found

the right predictors yet.5 A similar picture holds for by-word variation: different words

could have intrinsically different VOT values, a type of ‘word-specific phonetics’ (Pierre-

humbert, 2002), or there may be important predictors accounting for at least some of the

variance that we have not incorporated into the current model.

Next, consider the by-speaker random slopes. Assessed in terms of importance to

model likelihood, by-speaker variation in the POA, stress, and speaking rate effects are

the most important, followed by following vowel height and word frequency, while the

following segment effect does not differ by speaker. However, the between-speaker dif-

ferences are rarely large enough to predict that speakers differ qualitatively (different

sign) in the effect of some factor. By and large, speakers differ quantitatively in the factors

conditioning VOT variation, but not qualitatively.

Finally, it would be nice to know how much each variable contributes to the model,

5. Of course, these possibilities are not mutually exclusive.
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Table 6.4: Effect of dropping different sets of fixed and random effect terms onR2, relative
to R2 for the full model. Top group: all terms corresponding to each input variable.
Middle group: All random effects at the Speaker or Word level. Bottom: all fixed and
random effect terms.

Predictor Terms ∆(R2) %∆(R2)

Speaking rate

Fixed effects, random slopes

0.02764 6.12
High vowel 0.00318 0.70
POA 0.02060 4.56
High V:POA 0.00080 0.18
Stressed 0.00465 1.03
Following segment 0.00064 0.14
Frequency 0.00116 0.26
Gender 0.00000 0.00
All 0.07830 17.34

Speaker Random intercept 0.02104 4.66
Random intercept & slopes 0.16633 36.84

Word Random intercept 0.06572 14.56

All Fixed effects, random intercepts & slopes 0.45145 100.00

in terms of both the fixed and random effects. One way to quantify a variable’s net effect

is the difference in R2 (denoted ∆R2) resulting when all terms involving the variable are

dropped from the model.6 Table 6.4 shows the effect on R2 of dropping different sets of

fixed and random effect terms. By this measure, by-speaker and by-word variation make

the biggest contributions to the model, followed by speaking rate and POA, then stress

and following vowel height, then frequency and following segment type, and finally gen-

der. Disregarding by-speaker and by-word variation, the ordering of different factors is

roughly: speaking rate > phonological predictors > word-specific predictor (frequency)

> social factor (gender), though there is admittedly only one variable for each of the last

two groups.

6. Note that ∆R2 should be understood simply as a measure of change in model quality, not as a measure
of change in the amount of variance explained (see Sec. 2.2.4).
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Joint effect of predictors In addition to comparing the effects of different terms in the

model, we can also consider how well they jointly account for VOT variation in the data.

As noted above, the percentage change in data variance under the full model is R2 =

0.451, meaning the model’s likelihood improves over an intercept-only model by about

45%.

This figure can be compared to the value of R2 = 0.90 found by Allen et al. (2003), in

their laboratory study of isolated word productions, for a model containing a by-speaker

random intercept and a fixed effect of speaking rate.7 We can also compare less directly

with Yao (2009b), who modeled VOT variation as a function of a variety of predictors

(including speaking rate) for two speakers in the Buckeye Corpus. Yao fit a classic linear

regression to each speaker’s data, and found that R2 < 0.20 for each speaker.

Despite the methodological difference between the three studies (ours, Yao, Allen et

al.), it is striking that in Allen et al.’s study has the highest R2 with the fewest variables,

while in our study and Yao’s, R2 is much lower despite using more variables.8 It seems

reasonable to assume that this difference results from the different types of speech exam-

ined: conversational speech in our study and Yao’s, vs. isolated words in a laboratory

setting for Allen et al. Under this assumption, it seems that VOT in conversational speech

is much less predictable than lab speech (c.f. Keating, 1998). : despite incorporating many

known factors determining VOT variation, we explain only 1/2 of data variability in our

conversational dataset; incorporating only a few factors, Allen et al. explain 90% of data

variability in a laboratory dataset. There is also a huge difference in the effect of speaking

rate in the two datasets: this variable mops up most of data variability for Allen et al., but

only accounts for a modest amount of the variability observed in our dataset. This differ-

ence suggests a worrying possibility: some factors that influence VOT in conversational

7. It is not clear exactly how Allen et al. calculate this figure, but the definition of R2 we are using seems
the most likely option.

8. If Allen et al. had incorporated place of articulation into their model (they use words beginning with
/p/, /t/, and /k/), their R2 would be even higher and the difference to the other two studies would be
more stark.

156



speech may not be detected in laboratory speech, since their effects may be very small

compared to a few very large effects (speaking rate, speaker identity).

In general, our study and Yao’s show that there is much VOT variation left to ex-

plain in conversational speech. Future work should see how much more variability can

be accounted for by incorporating more predictors, or using different types of models

(e.g., a model other than mixed-effects linear regression, or allowing non-linear effects

of some predictors). It is an open question whether VOT—and phonetic variation more

generally—will turn out to be largely predictable in conversational speech once the ap-

propriate variables are plugged into the right model, or whether there is simply a lot of

unpredictable noise.

6.2 Coronal stop deletion

Word-final t/d realization in the Big Brother data was modeled using mixed-effects logis-

tic regression models, of the form discussed in Sec. 2.2.1.3, with crossed random effects

for speakers and wordforms. Models were fit in R using the lme4 package (Bates et al.,

2011), as linear mixed-effects models with a logistic link function. To maximize compa-

rability of the results with previous work on CSD in British varieties, two models were

fitted: one to data from all 17 speakers (the full model/dataset), the other to data from the

14 British speakers only (the British model/dataset). The models’ predictors are based on

seven input variables (Table 6.5).9

Following common practice, frequency (of the host word’s CELEX wordform) was log-

transformed due to the highly-skewed frequency distribution of words, so that the pre-

dictor included in the model (log-transformed frequency) will have an approximately

normal distribution. Several steps were taken to minimize collinearity. Log frequency

9. Note that there is only the possibility of the next word beginning with /t/ or /d/ if the following
context is not a vowel. Thus, to avoid collinearity, the predictor for neutralizing context was set to 0 for
tokens with a following vowel, and its actual interpretation is “next word begins with /t/ or /d/, given
that the next word does not begin with a vowel.”
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Table 6.5: Input variables for the CSD static models.

Input Type

Preceding context factor (sibilant, sonorant, obstruent)
Following context factor (consonant, vowel, pause)
Morphological context factor (monomorpheme, semi-weak, weak)
Frequency continuous (log-transformed)
Cluster voicing factor (same, different)
Neutralizing context factor (yes, no)
Speaker gender factor (male, female)

was centered at the word level. Each two-level factor was converted to a sum-coded

numerical predictor (-0.5, 0.5). Each three-level factor was Helmert-coded, such that the

two resulting numerical predictors correspond to (for example) the difference between

monomorphemes and the mean of semi-weak and weak pasts (predictor 1), and between

semi-weak pasts and weak pasts (predictor 2).

In addition to the intercept, the models include fixed-effect predictors for the main

effect of each input variable, to model the effect of each input on CSD rate. They also

include a by-speaker random slope for each fixed-effect term, to account for variation

between speakers in the effect of each predictor. By-speaker and by-word random inter-

cepts are also included, to allow for speaker-specific and word-specific adjustments in

CSD rate. No correlations between random effect terms are included.

The resulting models predict that a token’s probability of deletion is a function of

terms for the speaker, the host word, and the observation. The speaker’s term is their

own mean (log-odds of) deletion rate, in part determined by gender. The word’s term

comes from its own mean log-odds of deletion rate, in part determined by its preced-

ing phonological context (including whether the final cluster has homogenous voicing),

its CELEX frequency, and its morphological class; the exact effect of these factors varies

by speaker. The observation-level term comes from the following phonological context

(including whether it is neutralizing), and this effect also varies by speaker.

158



6.2.1 Diagnostics and goodness of fit

Normality of residuals: In an initial fit of each model using the full dataset, the distributions

of residuals were highly non-normal, with much longer left and right tails than a normal

distribution. Tokens with residuals more than 3 standard deviations from the mean were

trimmed from each dataset, comprising 2.0% of the full dataset and 2.1% of the British

dataset. On re-fitting, both models had residuals much closer to normality.

Multicollinearity among fixed-effect predictors: All correlations between fixed effects are

small for both models (|r| ≤ 0.4), suggesting that no two predictors are correlated. The

condition numbers of the fixed effects was κ = 7.6 for both models, indicating very little

collinearity.

Goodness of fit: A popular measure of overall model fit for logistic regressions is the

Nagelkerke pseudo-R2, written R2
ν (see Sec. 2.2.4). The model for the full dataset has

R2
ν = 0.51 relative to a baseline model consisting only of the intercept, and R2

ν = 0.34

relative to a baseline consisting only of by-speaker and by-word intercepts. The figures

for the British dataset are R2
ν = 0.56 and R2

ν = 0.38. These values indicate that adding

the models where all predictors are included substantially improve over baseline models

where the same deletion rate is assumed across speakers and words, or where different

speakers and different words have characteristic deletion rates.

6.2.2 Results

We discuss the models’ predictors for each input variable, making reference to three

tables. Table 6.6 shows the estimated fixed-effect coefficients for each model, with as-

sociated standard errors and significances. Table 6.7 shows how much each predictor

contributes to each models, in terms of the effect on model likelihood of dropping both

its corresponding fixed-effect and by-speaker random slope terms. Table 6.8 similarly

shows how much each random effect term (by-speaker random slopes and intercepts)
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Table 6.6: Predictors, standard errors, associated Wald’s z-score, and significance for all
fixed effect terms in the models for all speakers and for British speakers only

British speakers β̂ SE(β̂) z Pr(>|z|)
Intercept -2.16 0.19 -11.2 <0.0001
Following (V vs. C) 1.11 0.11 10.1 <0.0001
Following (Pause vs. V/C) 1.05 0.07 15.1 <0.0001
Preceding (Sonorant vs. Sibilant) 0.27 0.15 1.8 0.069
Preceding (Obstruent vs. Son/Sib) 0.24 0.09 2.6 0.009
Frequency 0.22 0.09 2.4 0.018
Morph. class (Reg. vs. Irreg.) -0.18 0.20 -0.9 0.38
Morph. class (Mono. vs. Past) 0.17 0.07 2.4 0.016
Voicing 0.49 0.43 1.1 0.26
Neutralizing context 0.56 0.06 9.2 <0.0001
Female speaker 0.27 0.29 0.96 0.34

All speakers β̂ SE(β̂) z Pr(>|z|)
Intercept -1.74 0.24 -7.3 <0.0001
Following (V vs. C) 1.00 0.085 11.7 <0.0001
Following (Pause vs. V/C) 0.93 0.081 11.5 <0.0001
Preceding (Sonorant vs. Sibilant) 0.31 0.14 2.1 0.032
Preceding (Obstruent vs. Son/Sib) 0.25 0.073 3.4 0.001
Frequency 0.17 0.09 1.8 0.067
Morph. class (Reg. vs. Irreg.) -0.02 0.17 -0.1 0.907
Morph. class (Mono. vs. Past) 0.19 0.076 2.5 0.012
Voicing 0.58 0.37 1.6 0.11
Neutralizing context 0.47 0.084 5.7 <0.0001
Female speaker -0.08 0.43 -0.2 0.85

contributes to each model.

Intercept The intercept fixed effect term can be interpreted as the predicted deletion rate

when all predictors are set to zero. Because all predictors have been centered, the intercept

can be roughly thought of as an “average rate” of CSD, after controlling for effects of

linguistic and social conditioning factors, and for adjustments due to individual speakers

and words. Transforming from log-odds, the average rates are 10.3% (=logit−1(-2.16))

for British speakers and 14.9% for all speakers. These percentages are significantly lower

the mean of the deletion rates for each (speaker,word) pair, which are 42.1% (British) and
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Table 6.7: Effect of dropping each predictor (fixed effects + random slopes) from the
model, for all speakers (left) and for British speakers only (right).

Predictor df British All
χ2 Pr(>χ2) χ2 Pr(>χ2)

Following context 4 1067.9 <0.0001 1174.3 <0.0001
Preceding context 4 30.5 <0.0001 60.2 <0.0001
Morphological class 4 5.6 0.228 10.2 0.033
Frequency 2 10.1 0.007 17.2 <0.0001
Voicing 2 90.9 <0.0001 108.1 <0.0001
Neutralizing context 2 104.7 <0.0001 104.5 <0.0001
Gender 1 0.8 0.36 0.0 0.85

Table 6.8: Effect of dropping random slope (top) and random intercept (bottom) terms
from the models for all speakers and for British speakers only.

Predictor df British All
χ2 Pr(>χ2) χ2 Pr(>χ2)

Following context 2 23.4 <0.0001 35.1 <0.0001
Preceding context 2 17.4 <0.0001 37.3 <0.0001
Morphological class 2 0.2 0.915 1.2 0.541
Frequency 1 2.8 0.095 11.3 <0.0001
Voicing 1 76.7 <0.0001 94.5 <0.0001
Neutralizing context 1 0.0 1 11.1 0.001

Speaker 1 11.0 0.001 51.5 <0.0001
Word 1 229.5 <0.0001 264.0 <0.0001
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44.6% (full). It is difficult to compare these mean deletion rate numbers to those reported

in previous studies of CSD, especially because of the non-standard choices taken here on

which tokens to discard.

The standard deviations corresponding to the by-speaker and by-word random inter-

cepts are σs = 0.44 and σw = 0.91 for the British data, and σs = 0.79 and σw = 0.86 for

the full dataset. Unsurprisingly, the full set of speakers differs more in CSD rate than

British speakers alone do. Words have about the same spread of deletion rates in the

British dataset as in the full dataset. For both datasets the amount of between-speaker

variation in deletion rate is smaller than the amount of between-word variation; for the

British data, much smaller.

The relative size of σ2
s and σ2

w can be thought of as measuring how much the remaining

variation in CSD usage can be attributed to the speaker vs. the host word, after taking fac-

tors into account that were included in the model as predictors. By this measure, speakers

account for 1/4 as much variation as words (σ2
s/σ

2
w). This discrepancy is striking given

that no speaker-level predictors except gender (which is not significant for either dataset)

have been included in the model; most predictors are word-level. What is not clear is

to what extent the remaining by-speaker and by-word variances indicate truly arbitrary

differences in CSD rate between speakers and words, or the effects of factors not modeled

here. The size of σw relative to σs suggests that searching for word-level predictors will

be a more fruitful direction for future work modeling CSD in Big Brother.

To my knowledge, Johnson’s (2012) study of the Buckeye Corpus is the only CSD

study where by-speaker and by-word random intercept variances are reported. He also

finds less by-speaker variation than by-word variation: σs = 0.48, σw = 0.59.10

10. Recall that the Buckeye Corpus consists of sociolinguistic interviews with speakers from a single
community (Columbus, Ohio). Note that Johnson defines “word” orthographically, while here it is defined
as the CELEX wordform: the orthographic word augmented with non-orthographic (e.g., morphological,
part-of-speech) information. However, re-fitting the Big Brother models using the orthographic definition
of word gives qualitatively similar results.
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Phonological context The fixed-effect coefficients for preceding and following phono-

logical contexts, as well as their significances, have similar values in the two models. The

following context coefficients are highly significant, while one preceding context coeffi-

cient is somewhat significant (p=0.03–0.06) and the other is very significant (Table 6.6). As

expected from previous work, deletion is more likely before consonants than before vow-

els, as well as progressively more likely following sibilants, sonorants, and obstruents.

Deletion is least likely before pauses, as found in some previous studies. Comparing to

British studies in particular, TT find deletion least likely before pauses, while Smith et al.

find it least likely before vowels.

The random effect coefficients for both preceding and following phonological con-

texts also make highly significant contributions to each model (Table 6.8), meaning that

speakers differ in their expected deletion rates in different phonological contexts.

Morphological class The estimated fixed-effect coefficients for morphological class are

similar for the two datasets. There is no significant difference between the deletion rate of

irregular and regular past tense forms. However, there is a significant difference between

monomorphemes and past tense forms, in the expected direction (monomorphemes delete

more than pasts). For both models, the contribution of the random slopes for morpholog-

ical class to the model is not significant. That is, although speakers show a morphological

effect as a group, they differ very little in the size of the morphological effect.

Frequency For both datasets, there is an effect of frequency in the expected direction:

more frequent words undergo CSD more often. The effect is significant (p = 0.018) in

the British model and marginal (p = 0.067) in the full model. In addition, the random

slope for frequency makes a significant contribution to the full model (<0.0001), but not

the British model (p = 0.095). These differences between the models are due to a single

speaker (Mohamed) who has a far lower slope for frequency than other speakers. A

model fit to the full dataset with his data removed gives a much more similar frequency
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effect to the British model. For both datasets, the predicted frequency effects for each

speaker differ in magnitude, but are all in the expected direction.

Voicing For both datasets, the fixed effect coefficient for voicing of the final cluster is

in the expected direction (higher deletion rates for hetero-voiced clusters), but does not

reach significance. Note that the actual estimated effect of voicing is actual fairly large,

compared to the coefficients for other fixed effects: for the British data, for example, hav-

ing a hetero-voiced cluster makes the odds of deletion 1.6 times higher (=exp(0.49)). The

effect does not reach significance because the corresponding standard error is large, which

is due to huge differences between speakers in the effect of voicing. For both datasets, the

random slope for voicing makes a far more important contribution to the model than

the random slope for any other predictor, assessed by the effect of dropping it from the

model. Importantly, it is not just the magnitude of the effect that differs by speaker, but

its direction: some speakers are predicted to delete more for homo-voiced clusters, and

others less.

Neutralizing context There is a highly significant effect of neutralizing context in the

expected direction in both models: the odds of deletion are 1.6/1.75 higher (full/British

data) before a word beginning with a coronal stop. British speakers differ little in this

effect, with a random slope of near zero, while the full set of speakers differs somewhat

(but with no speaker having a predicted effect in the unexpected direction). Accordingly,

the contribution of the random slope term is not significant for the British model, but

highly significant for the full model.

Gender Neither model has a significant gender effect: there is no evidence that women

delete at a different rate than men.
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6.2.3 Discussion

Several aspects of the models are interesting in light of previous work. In addition, there

are several methodological points which may be important for explaining discrepancies

between our models and previous work, and for future work on CSD.

Caveat It should be noted from the outset that our datasets differ from those used in

most sociolinguistic studies in a crucial respect: they do not consist of speakers from a

single speech community, but a collection of speakers from very different dialect regions.

Because dialects differ to some extent in the effects of different conditioning factors on

CSD (Schreier, 2005)—in particular the relative strength of different factors—modeling

data from geographically dispersed speakers may lead to somewhat different results than

modeling data from a single speech community. To maximize comparability with previ-

ous work, we only consider the British model in our discussion.11

Morphological class Morphological class was coded as two fixed effects in our model:

one for the difference between monomorphemes and pasts, and one for the difference

between weak and semi-weak pasts, which we write as βM/P and βSW/W for conve-

nience. Monomorphemes were found to be deleted significantly more often than pasts

(βM/P : p=0.01), in agreement with most previous work on CSD. However, there was

no significant difference in deletion rate between irregular and regular pasts (βSW/W :

p = 0.38). Importantly, the difference in significance between the two coefficients is due

to the standard error of βSW/W being much higher, despite the coefficient estimates be-

ing of similar magnitude. That is, the size of both effects is comparable, but the model is

“less certain” about the semi-weak/weak effect, due to the sparsity of semi-weak pasts in

the data (110 tokens, 41 wordforms), relative to both weak pasts (338 tokens, 198 word-

forms) and monomorphemes (4266 tokens, 292 wordforms). This imbalance is due to the

11. Data spanning a single country is in fact not unprecedented in the CSD literature: for example, Guy
(1991) and Neu (1980) pool speakers from across the US.
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frequency with which irregular pasts occur in English, and thus can be assumed to be

present in CSD datasets used in previous work, which are typically of comparable size

to our dataset (thousands of observations). Almost all previous work (where multifacto-

rial analyses are reported) reports results in the form output by VARBRUL/GOLDVARB,

which does not include standard errors on coefficient estimates. Rather, if the model se-

lects a factor as significant (using a stepwise model selection procedure), estimated “factor

weights” are output for all levels of the factor, no matter how certain the model is about

the factor weight for each level. Our results suggest a possible source of at least some of

the divergent results about CSD in semi-weak pasts reported in the literature, compared

to the consistency of results about monomorphemes vs. pasts: the factor weights reported

for semi-weak pasts are simply less reliable, due to data sparsity.

Although we do find a morphological effect in the data, it is very weak. Dropping the

morphological class terms (2 fixed effects, 2 random slopes) from the British model does

not make a significant difference in model likelihood, relative to the degrees of freedom

(Table 6.7). To compare more directly with previous work, where random slopes have not

been included, we can consider a model where the two random slope terms have been

removed. Dropping the two fixed effect terms from this model only has a marginal effect

(χ2(2) = 5.5, p = 0.065), suggesting that morphological class is at best a minor factor in

explaining the CSD data.12 How can this be squared with the strong morphological class

effects found in most previous studies?

One possibility, following TT’s finding of no morphological effect on CSD for their

York speakers, is that morphology has a much weaker role (if any) in British varieties,

compared to North American varieties. Another possibility involves the relationship

between morphological class and frequency. On average in English, monomorphemes

have higher frequency than pasts, and irregular pasts have higher frequency than regular

12. Note in particular that in a stepwise procedure with p = 0.05, the cutoff most common used in VAR-
BRUL/GOLDVARB analyses, Morphological Class would not be selected as significant.
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pasts (as noted in the context of CSD by Myers and Guy, 1997: 220). Thus, words from

morphological classes that promote deletion tend to have higher frequencies, which also

promotes deletion. A model including both variables estimates how important each in-

put is (frequency, morphological class) in the presence of the other. In our case, frequency

makes a more significant contribution to the model, as measured by the effect of dropping

fixed+random effect terms (Table 6.7). If frequency is not included in the model, we are in

danger of omitted variable bias: when two variables are positively correlated, omitting one

from the model can spuriously increase the significance of the other. This is the case for

the British data: if frequency (both fixed and random effect terms) is left out of the model,

the morphological effect becomes highly significant (χ2(5) = 578.6, p < 0.0001). Many

previous studies of CSD have not included frequency as a predictor. If the datasets used

in previous studies showed an effect similar to the current dataset—where frequency has

a significant effect, after controlling for morphological class—then the effect of morpho-

logical class may have been overestimated, due to not including frequency in the model.

Frequency In the British data, there is a significant effect of frequency on deletion rate.

Compared to other predictors in terms of the significance of its contribution (fixed and

random effect terms) to model likelihood, the frequency effect is more important than

morphological class (which is not significant), and less important than all predictors re-

lated to the phonological context. This finding is similar to Johnson (2012), who finds that

frequency mattered less (in terms of model likelihood) than phonological context and

morphological class.

This finding contributes to a larger debate about the existence and size of frequency

effects on sociolinguistic variables. Some studies have found frequency to be a significant

predictor of CSD, and argue for the importance of frequency (Bybee, 2000, 2007; Jurafsky

et al., 2001; Myers and Guy, 1997) As pointed out by Walker (2012), an issue with many

of these studies is that the effect of frequency is considered without fully controlling for
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other variables known to affect deletion rate using a multivariate analysis, so it is not

clear how much of a role frequency per se plays. Put otherwise, frequency effects may

be overestimated (e.g., due to omitted variable bias, discussed above). Studies where

frequency is considered in a multivariate analysis have found modest or negligible ef-

fects of frequency on sociolinguistic variables, including CSD (Abramowicz, 2007; Clark

and Trousdale, 2009; Dinkin, 2008; Labov, 2010: Ch. 13; Walker, 2012). An issue with

these studies, which mostly use VARBRUL/GOLDVARB (with the exception of Johnson,

2012), is that because these programs can only model discrete predictors, frequency is dis-

cretized into categories (e.g., low/high). Discretizing continuous predictors can lead to

biased estimates of their effect on the response, and increase Type II error (the probability

of failing to reject the null hypothesis of no effect, when in fact it is false) (MacCallum

et al., 2002). Thus, discretizing frequency could lead to underestimation of its effect.

In sum, the effect of frequency may have been overestimated in (many) studies ar-

guing for frequency effects, and underestimated in studies arguing against frequency ef-

fects, for methodological reasons. Given that the importance of frequency as a predictor

of sociolinguistic variation relative to other predictors is of theoretical interest, correcting

these methodological issues in future work is important to assess the true contribution of

frequency.

Voicing There is no significant effect of cluster voicing on deletion rate in the British

data. This result contrasts with the general finding that words with homo-voiced clusters

have higher deletion rates. The explanation for this discrepancy may lie in our inclusion

of a random slope term for cluster voicing. As discussed above, the model predicts huge

between-speaker variance in the effect of voicing. If the random slope term is left out

of the model, the fixed effect of voicing becomes significant. This suggests that words

with homo-voiced clusters are being deleted more often, on average; but there are huge

differences between speakers in the size and direction of the voicing effect, and once
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these are accounted for, the spread of speakers’ deletion rates is too large relative to their

mean value to conclude that there is a non-zero population-level effect. Thus, including a

random slope term for cluster voicing makes a qualitative difference in what conclusions

can be drawn from the model.

The voicing effect in our data can be interpreted with respect to previous work in two

ways, depending on the (unknown) reason we observe such large between-speaker dif-

ferences. The spread of voicing effects could be the result of speakers’ dialects having

different voicing effects, some even with the reverse effect (homo-voiced deleting less

than hetero-voiced).13 In this case, we would expect future work on British speech com-

munities to find very different voicing effects. Cluster voicing would then join preceding

phonological context as a factor in CSD that differs greatly across dialects. Another pos-

sibility is that large by-speaker variation in the voicing effect exists in every community.

In this case, because previous studies that have considered voicing as a factor in CSD

may have overstated its effect by not allowing for between-speaker variation. The second

possibility, though remote, argues for incorporating between-speaker variation (i.e., via

random slopes) into future studies of CSD.

6.3 Vowel formants

For each vowel, we build one linear mixed-effects model for normalized F1, and one

model for normalized F2, resulting in six models in total.

Of course, F1 and F2 do not vary independently, and we would ideally model them

jointly, for each vowel. It turns out that mixed-effects models for multivariate responses

are highly non-trivial, and are the subject of ongoing research. Researchers have dealt

with the problem of modeling F1/F2 data in a variety of ways. F1 and F2 can be jointly

13. No previous work on CSD in British dialects has examined cluster voicing, so it is not clear how
plausible this hypothesis is; however, the reverse effect has been found at least once (by Hazen, 2011, in
Appalachia).
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modeled in a non-mixed regression, and the importance of each predictor assessed by

performing a multivariate analysis of variance (MANOVA) (Hay et al., 2006). In this

approach, no random effect terms can be included. A particular transformation of F1 and

F2 can be chosen based on the question of interest; for example, because GOOSE-fronting

mostly involves change in F2, F2 alone can be modeled. Finally, separate regressions can

be performed for F1 and F2. We choose the last option because we want a model that

includes random effects, and because it is important for F1 and F2 to be able to vary

arbitrarily (in particular in the dynamic models considered in the next chapter, so that

longitudinal variation in any direction in F1/F2 space is possible). However, building

models that respect both the multivariate and hierarchical nature of vowel formant data

is a worthy direction for future work.

It is also worth noting that the static models for vowel formants are much more basic

than those described for VOT and coronal stop deletion, both in terms of the number of

conditioning factors considered and the amount of comparison with previous work. The

vowel formant data turns out to be much sparser (fewer tokens, relative to the number

of conditioning factors), forcing us to adopt simpler models. There is also less relevant

previous work to which we can directly compare our results. Our goals for the static

models are simply to build basic models that account for the effects of speaker identity

and the consonantal context on vowel formants, and to check as much as possible that the

models’ results make sense with respect to previous work.

Predictors The terms included in our models are based on the coding given by FAVE,

which parametrizes the surrounding segments as four input variables:

• Preceding segment: Oral apical, nasal apical, oral labial, nasal labial, liquid, obstru-

ent+liquid cluster, palatal, velar, w/y, other.

• Following segment manner of articulation: Affricate, fricative, lateral, nasal, rhotic,

stop, other.
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• Following segment place of articulation: Alveolar, bilabial, interdental, labiodental,

palatal, velar, other.

• Following segment voicing: Voiced, unvoiced, other.

This parametrization is taken from Plotnik, a program widely used by sociolinguists

for visualizing the effects of context on vowel quality.14 The coding scheme reflects most

groups of segments which have been found empirically to condition variation and change

in sociolinguistic studies (usually of American English, but also other varieties and other

languages). We use this parametrization for convenience, without further comment.

Model specification Each of the six models was fit in R, using lmer() in the lme4

package. Following consonant’s voicing was Helmert-coded to give two fixed-effect pre-

dictors: one for the difference between unvoiced and voiced, and one for the difference

between unvoiced/voiced and ‘other’ (for tokens in word-final position, or followed by

another vowel). Each of the other three consonantal context variables was included as a

random intercept term, as was the speaker’s identity.15 Thus, the model included four

random intercept terms: by-following manner, by-following place, by-preceding seg-

ment, and by-speaker. This model structure means that we are assuming (for example)

that for F2 of GOOSE, different preceding segment classes affect F2 to varying degrees,

the effects of different preceding segment classes are normally distributed, and effects of

preceding segment class are independent of effects of following manner and following

place.

We note that in contrast to the models for VOT and coronal stop deletion, we have

not included by-speaker random slopes or by-word random intercepts, because the data

14. http://www.ling.upenn.edu/˜wlabov/Plotnik.html

15. The choice to code these consonantal context variables as random effects is motivated by their extreme
non-independence. That they are not independent (for example, there is no interdental nasal in English)
means that including them all as fixed-effect predictors would give a singular model matrix. A new, non-
singular parametrization of the variables would need to be chosen, and it is not clear how to make this
choice in a principled way.
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Table 6.9: Fixed effect estimates, t-values, and associated significances for the effect of
following consonant voicing on normalized formants of GOOSE, STRUT, TRAP’.

Vowel F1 F2

β̂ t P(> |t|) β̂ t P(> |t|)
GOOSE -0.13 -2.2 0.029 -0.02 -0.16 0.87
STRUT -0.23 -6.4 <0.0001 0.17 6.4 <0.0001
TRAP’ -0.08 -2.1 0.036 0.04 1.7 0.085

is simply too sparse. The models thus assume that the effects of consonantal context are

the same for different speakers, and that words do not differ in their formant values, after

accounting for by-speaker differences and the consonantal context. The latter assump-

tion has the practical effect that higher-frequency words will have more influence on the

model’s estimates. However, it will turn out to be possible to include by-word random

intercepts in the dynamic models (Chapter 7), where we fit models only for individual

speakers.

Diagnostics and goodness of fit In an initial fit of each of the six models, the distribu-

tion of residuals was somewhat non-normal. We manually trimmed outliers (using his-

tograms of residuals), comprising between 0.3% and 1.9% of the data for the six datasets.

On re-fitting, all models had residuals much closer to normality.

Because each model contains only predictors for a single Helmert-coded input (fol-

lowing consonant voicing), there is no risk of collinearity.

Goodness of fit is assessed by R2, defined in terms of model likelihood relative to a

base model with only an intercept term (Eq. (2.4)). R2 is 0.16 and 0.46 for F1 and F2 of

GOOSE, 0.50 and 0.44 for STRUT, and 0.34 and 0.63 for TRAP’.

6.3.1 Results

Voicing Table 6.9 shows the estimated fixed effect coefficient for each model, along with

its associated t value and significance, for the difference between a following voiced and
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following voiceless consonant. Recall that based on laboratory studies, we expect F1 to

be lower for a following voiced consonant, and for following consonant voicing to have

little effect on F1 (see Sec. 4.4.3.2). The prediction for F1 is met for all three vowels, with F1

predicted to be significantly lower when followed by a voiced consonant. The marginal

and non-significant following voicing effects in the F2 models for GOOSE and TRAP’ are

consistent with the prediction for F2; however, there is a large and unexpected effect of

following voicing for STRUT.

Random effects Each model contains four random intercepts, corresponding to speaker,

preceding segment identity, following segment place, and following segment manner.

The variance of the by-speaker random intercept is large in each model, as expected given

the range of qualities of the three vowels across speakers’ dialect regions (see Sec. 5.2.4.2).

For the three consonantal context random intercepts, the best linear unbiased predic-

tors (BLUPs; see Sec. 2.2.2) are plotted in Figs. 6.3–6.4, along with 95% confidence intervals

from simulations over the posterior of the model parameters. For most terms (e.g., for fol-

lowing segment place for F2 for TRAP’), there is significant uncertainty about the relative

position of the different random effects. This uncertainty reflects the small number of

tokens per random effect in each dataset.

In general, it is difficult to compare the effects of consonantal context predicted by our

models to previous work, because laboratory studies have only examined a subset of con-

sonantal contexts (e.g., stops and fricatives, stops alone; see Sec. 4.4.3). For example, our

following velar means “any following consonant with a velar place of articulation”;

in laboratory studies, it has meant “non-nasal velar consonants” or “velar stops.”

That said, a few comparisons with previous work are possible, and offer some reas-

surance that our models make sensible predictions. For GOOSE, the expected pattern is

for F2 to be highest before coronals and /j/, and smallest before /l/ (Sec. 4.4.3.2). This is

exactly the pattern predicted by our model of F2 for GOOSE (Fig. 6.3): for preceding con-
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Figure 6.3: BLUPs for random effects corresponding to the preceding segment, following
segment place, and following segment manner, in the models for normalized F1 and F2
for GOOSE. Errorbars indicate 95% HPD intervals based on 1000 draws from the posterior
distribution over model parameters.
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Figure 6.4: BLUPs for random effects for STRUT (top) and TRAP’ (bottom) F1 and F2 mod-
els. See Fig. 6.3 caption.
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sonant class, the largest BLUPs are for palatal, oral apical, and nasal apical,

which together make up the coronals; the next highest BLUP, is for w/y, which includes

/j/. And for following consonant manner, the BLUP for /l/ has the lowest value.

We can also consider the effects of a following nasal on F1, the formant most affected

by nasalization. For following consonant manner, the BLUP for nasal is positive for

GOOSE and STRUT, and negative for TRAP’, compared to the BLUPs for other manners of

articulation. This is the expected effect of coarticulation with a nasal: lower F1 for low

vowels, and higher F1 for high vowels (Beddor, 1982).
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CHAPTER 7

BIG BROTHER: DYNAMIC MODELS

Our goal in building dynamic models is to understand the dynamics of each variable

within individuals, after controlling for linguistic factors. Ideally, we would treat time

like any other variable, analogously to how we modeled the effects of linguistic factors:

terms for group-level time trends (fixed effects) and individual deviations from the group-

level trends (random slopes). Analogously to including a word-level random effect to

model word-level linguistic predictors that are not included in the model, we would also

allow for clip-by-clip variation (random intercept), to account for clip-level factors that

are not included in the model (e.g., conversational topic). We would then be able to fit a

single model for each variable, modeling linguistic factors and time across all speakers.

However, modeling time like linguistic factors assumes that speakers show qualitatively

similar time dependence, namely time trends of a particular functional form, and sim-

ilar amounts of by-clip variation. We shall see that this is not the case for either type

of time dependence: speakers differ qualitatively both in time trends and by-clip varia-

tion. Building a model where both are allowed to vary turns out to be highly non-trivial,

particularly given the exploratory nature of this study.

Instead, we will fit models for individual speakers. The basic strategy will be to fit

a series of models of a speaker’s use of a variable that assume different types of time

dependence, then pick the best one.

In this chapter, we first describe each step of this process: what types of time depen-

dence are considered, how linguistic factors are controlled for, and how the best model

is chosen (Sec. 7.1). We then describe the individual models selected for each variable

(VOT, CSD, vowel formants), and examine whether each shows evidence of convergence

(Sec. 7.2–7.4). Finally, we consider explanations for the varied patterns of time depen-

dence that are observed (Sec. 7.5), and discuss implications of our results for the relation-

ship between short-term and long-term change (Sec. 7.6).
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7.1 Procedure

Types of time dependence We consider two basic types of longitudinal variation: ran-

dom by-clip variation, without regard to when the clips occur, and time trends, correspond-

ing to linear or non-linear trends in a variable’s use as a function of what day the clip is

from.1 In modeling terms, by-clip variation corresponds to including a by-clip random

intercept, and time trends correspond to fixed-effect terms for functions of EPISODE.

Because there is no previous work on medium-term time trajectories of linguistic vari-

ables, we have no a priori hypothesis on what the dynamics of our variables will be, and

we must choose a set of possibilities to consider. We consider four types of time depen-

dence, corresponding to the presence or absence of by-clip variation and time trends:2

• Type 1: No time dependence.

• Type 2: By-clip variation. (Model includes by-clip random intercept.)

• Type 3: Time trend. (Model includes fixed effect term(s) for a linear, quadratic, cubic,

or quartic function of EPISODE.)

• Type 4: By-clip variation and time trend. (Model includes both types of term.)

Thus, for each variable for each speaker, we try 12 models (1 for Types 1–2 and 10

for types 3–4). The cutoff of degree=4 for polynomial time trends is empirically moti-

vated: allowing higher-order terms tended to lead to the best model (according to AIC;

see below) having an overfitted time trend with a high degree.

1. Other types of time dependence are possible. For example, we are not accounting for the relative
position of data points in a clip, or the fact that there are occasionally multiple clips from the same speaker
in a single day.

2. Note that this parametrization means we cannot fit arbitrary patterns of time dependence, such as
non-independence of clips which occur on adjacent days, or periodic time trends. Non-trivial covariance
structures for by-clip random effects and non-parametric time trends will be considered in future work,
for example by using generalized additive models. Ultimately, the types of time dependence considered
should depend on what longitudinal dynamics are observed in empirical studies of trajectories of linguistic
variables, once more are conducted.
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Clips occur on average between once per 3.1 days (median 2.6, range 1.8–7.7), depend-

ing on the speaker (Table 5.1), with greater density for speakers who are on the show for

longer. (As housemates are evicted, the number of housemates whose clips can be aired

decreases.) Thus, to distinguish between by-clip variation and long-term trends, we can

only consider housemates who spend a relatively long period in the house. Fifty days

(of 93 total) was chosen as an arbitrary cutoff, leaving 12 speakers (of 21): Dale, Darnell,

Kathreya, Lisa, Luke, Michael, Mohamed, Rachel, Rebecca, Rex, Sara, and Stuart. These

housemates account for 85% of housemate speech in all diary room clips.

Controlling for linguistic factors Linguistic factors are controlled for in the dynamic

models in one of two ways, depending on the amount of data available per speaker.

For VOT and CSD, there is enough data to build models for each speaker which in-

clude both linguistic factors and time. This approach allows linguistic factors to have dif-

ferent effects for different housemates, as we saw was the case in the static models (most

by-subject random slopes for linguistic factors were significant). The downside is that the

estimated effects of linguistic factors may be less accurate than in the static model, since

data from other housemates cannot be leveraged to estimate effects for which a particular

housemate has little relevant data.

For vowels, the data is much sparser. There are fewer tokens per subject, and more

degrees of freedom of linguistic factors to account for. Given the number of linguistic

factors relative to the amount of data, it was not possible even in the static models to

let the effects of linguistic factors vary by individual; the full dataset was needed just

to effectively estimate group-level effects. Thus, it is not possible to model linguistic

factors just using an individual housemate’s data, nor to model time and linguistic factors

simultaneously. the static models of the effects of linguistic factors on vowel formants.

This choice means we are assuming all individuals have the same effects for linguistic

factors—which is likely false—and we can only find time dependence in vowel formants
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that remains after these effects have been regressed out.

Model selection Model selection criteria are used for choosing among a set of candidate

statistical models of the same data, particularly when they are non-nested (they cannot

be ordered into a hierarchy, with the set of terms in each model a subset of the next-

highest model). Different criteria measure the tradeoff between how well a given model

fits the data and the model’s size (i.e., number of parameters, data points) in different

ways. Candidate models are then ranked by their values of the criterion, and either a

single model is chosen (model selection) or the models are combined weighted by some

function of their criterion values (model averaging) (Burnham and Anderson, 2002).

A variety of criteria exist, corresponding to different assumptions about the candidate

models and what the purpose of model selection is. The most widely-used are the Akaike

Information Criterion (AIC) and the Bayesian Information Criterion (BIC), or variants.3

Which model selection criterion to use depends on the dataset being modeled. AIC is

more appropriate in the ‘tapering effects’ scenario, where the response variable is a func-

tion of many different variables, with progressively smaller effect sizes, each of which

will only be detectable once enough data is collected (Burnham and Anderson, 2004).

BIC is more appropriate when there are relatively few large effects, and few or no smaller

effects. Modeling phonetic variation falls squarely into the first category, so we use AIC.

However, it should be noted that which form of time dependence we choose below for

different variables and housemates is generally not independent of the model selection

criterion chosen. Using BIC gives much more conservative time dependence: almost no

time trends (Types 3 or 4), more housemates with by-clip variation only, and many more

housemates with no time dependence. This difference is not surprising, given that BIC

tends to choose sparser models than AIC in many applications, in line with the different

goals of AIC and BIC-based model selection (Burnham and Anderson, 2004). But it does

3. Others are conditional AIC, Minimum Description Length, and the Deviance Information Criterion.
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suggest that we are observing relatively small effects of time dependence, and must be

cautious in generalizing from our results. The general issue of robustness of our results is

discussed below (Sec. 7.6.1).

7.2 Variable 1: Voice onset time

7.2.1 Models

For each of the 12 speakers, we fit 12 linear mixed-effect models of the logarithm of

automatically-measured VOT, as a function of both time and linguistic factors, and chose

the best one according to AIC.

Each model has one of the 12 types of time dependence described above. By-clip

variation corresponds to a by-clip random intercept, A linear time trend is simply a fixed-

effect term for EPISODE. For nonlinear time trends (quadratic, cubic, and quartic), fixed-

effect terms (2, 3, or 4) are included for restricted cubic splines with 3, 4, or 5 knots.4

The linguistic factors in each model are the same as in the static model for VOT (Sec.

6.1). Fixed-effect terms are included for speaking rate, height of the following vowel,

consonant place of articulation, its interaction with vowel height, (log) word frequency,

following segment type, and syllable stress; a by-word random intercept is also included,

to account for variation among words not accounted for by the fixed effect, and the unbal-

anced distribution of tokens by word types. All fixed effects were centered (continuous

variables) or Helmert-coded (factors) as in the static model.

For each speaker, we checked for signs of overfitting in the AIC-selected model, par-

ticularly near the endpoints, by comparing its predicted time trajectory with the empirical

data. There was overfitting for one speaker (Stuart), whose 3 lowest-AIC models had cu-

4. Restricted cubic splines with k knots are a basis for polynomial functions of order k-1 that are re-
stricted to be linear near the endpoints (minimum and maximum EPISODE). The advantages of using
restricted cubic splines rather than other bases for polynomial functions are discussed by Harrell (2001:
20–23); Stone and Koo (1985).
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bic or quartic time trends and predicted VOT near 0 at the right endpoint. We used the

lowest-AIC model which made sensible predictions (fourth-lowest AIC, quadratic time

trend).

7.2.2 Results

Table 7.1 summarizes the form of time dependence selected for each speaker’s dynamic

VOT model: the standard deviation of the by-clip variation (if any) and the order of the

time trend (if any) are shown. Speakers show diverse patterns of time dependence: two

show none, five show by-clip variation, four show long-term trends, and one shows both

by-clip variation and long-term trends. The table also shows the number of data points

and the number of clips per housemate, to check if there is any relationship with which

type of time dependence is selected. For example, it could be the case that we are only

detecting time dependence for housemates with more data, making the fact that those

housemates show time dependence an artifact of sample size rather than a meaningful

individual difference.) No such relationship is evident.

7.2.2.1 Predicted time dependence

To visualize the dynamics of VOT in the house, we examine the time trajectory of VOT

predicted by each housemate’s model, with linguistic predictors held constant. Continu-

ous predictors were set to their mean values, and each contrast for the discrete predictor

(place of articulation) was set to zero. Thus, predicted values roughly describe the house-

mate’s ‘mean VOT’.

Individual speakers The solid lines in Fig. 7.1 show the predicted time trajectory for

each housemate. For a housemate with by-clip variation, the line interpolates between the
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Table 7.1: Summary of best model of time dependence for VOT for each speaker, chosen
by AIC. σclip and Time Trend are the standard deviation of the model’s by-clip random
intercept and the degree of its long-term time trend, if any. N and Nclip are the number
of data points and the number of clips per housemate.

Housemate σclip Time trend N Nclip

Dale — Linear 380 24
Darnell 0.1139 — 569 36
Kathreya 0.1044 — 286 24
Lisa — — 460 32

Luke 3·10−7 — 652 28
Michael 0.0706 — 834 44
Mohamed — — 409 28
Rachel — Linear 392 35
Rebecca — Linear 181 17
Rex 0.0421 Linear 615 38
Sara 0.2312 — 221 16
Stuart — Quadratic 202 17

model-predicted value for each clip.5 For housemates without by-clip variation (Types 1,

3), the line simply shows the predicted time trend; if there is no time dependence, the line

is flat.

We can evaluate the predicted time trends by comparing to the empirical trends in

each housemate’s data. To get a sense both of each housemate’s empirical trend for VOT,

as well as how much VOT variation he shows on a given day, we compute the mean VOT

for each word produced at least once on that day. Each dashed line in Fig. 7.1 shows the

LOESS-smoothed time trajectory of these mean VOTs for one housemate, with shading in-

dicating 95% confidence intervals. The notches on the x-axis show when clips occur. fdsf

In comparing a speaker’s predicted and empirical time trajectories, it should be kept in

mind that in general the height (=position on the VOT axis) of the two will be different.

The predicted trajectory’s height depends on the particular values we are holding linguis-

tic factors constant at, which will not usually correspond to the mean over all words pro-

5. The BLUP for the clip’s random intercept, plus the predicted VOT on the day when the clip occurs
(global intercept, plus time trend if present).
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Figure 7.1: Solid lines: Best model of VOT time dependence for each speaker (see Table
7.1), with all linguistic predictors held constant. Non-smooth lines indicate by-clip varia-
tion, with linear interpolation between each clip’s fitted value. Dashed lines and shading:
Empirical time trajectory of speaker’s VOT, LOESS-smoothed over mean values for each
word on each day, with 95% confidence intervals.
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duced on a given day. However, the predicted and empirical patterns of time dependence

(independent of height) will generally be comparable.6 In general, for all time trajectories

presented in this chapter, the dynamic models predict relative time dependence (the dif-

ference between the variable’s value at two time points), and the height of the trajectory

depends on how linguistic factors are controlled for.

With this caveat, the models generally fit the observed dynamics well. They are also

conservative, in the sense of predicting less change than is empirically observed. For

speakers where time trends are predicted (Rachel, Rebecca, Rex, Stuart), the predicted

trend is smoother than the empirical trend. For most speakers where no time dependence

is predicted, there is little empirical time trend. The exception is Dale, for whom no time

trend is predicted despite an apparent empirical trend. For most speakers where by-clip

variation is predicted, the estimated by-clip variance (height of squiggles) is similar to

the observed by-clip variation among words (height of shading). The one exception is

Kathreya, where the mismatch can be attributed to very sparse data (few clips) in the

region where the fit is poor.

All speakers Fig. 7.2 shows predicted time trends for all speakers together, with shading

now indicating by-clip variation. There no clear pattern of overall convergence. However,

most speakers who show time trends start with high VOT (Dale, Rachel, Rebecca, Rex),

and decrease over the season; Stuart also begins with high VOT, increases, and then de-

creases. Interestingly, the mean VOT in the house (across speakers, where each speaker’s

value on a given day is calculated as the mean of word means) is between 55 and 60 ms

over the course of the season. Rex could be seen as shifting away from this value, and the

other four speakers towards it.

6. Assuming the speaker produces a representative sample of words on each day; otherwise the mean
VOT will be skewed by properties of the words.
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Figure 7.2: Best models of VOT time dependence for each speaker, with linguistic pre-
dictors held constant. Lines with shading are LOESS-smoothed trajectories for speakers
with by-clip variation, computed over predicted values for each clip, with 95% confidence
intervals. Dotted lines are trajectories for housemates with only by-clip variation.
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7.3 Variable 2: Coronal stop deletion

7.3.1 Models

As in the static model of CSD, we exclude one speaker (Katherya) who deletes near-

categorically. For the other 11 speakers, we fit 12 mixed-effects logistic regression models

of final coronal realization as a function of time and linguistic factors, and choose the best

one using AIC.

The 12 types of time dependence are the same as for VOT. Most linguistic factors are

the same as in the static model of CSD. Fixed-effect terms are included for preceding

context, following context, (log) word frequency, and following neutralizing context; a

by-word random intercept is also included, to account for variation among words not ac-

counted for by the fixed effect, and the unbalanced distribution of tokens by word types.

In the static model, we included morphological class as a factor with three levels

(monomorphemes, semi-weak pasts, weak pasts). For the dynamic models, we only in-

clude a two-way distinction (monomorphemes vs. pasts), because some of the 12 speakers

have very few semi-weak past tokens, which causes problems with model identifiability.7

Coding morphological class as monomorphemes vs. bimorphemes is in fact relatively

common in studies of CSD, since semi-weak pasts are so infrequent. All fixed effects

were centered (continuous predictors) or Helmert-coded (factors), as in the static model.

For each speaker, we checked for signs of overfitting in the AIC-selected model, par-

ticularly near the endpoints, by comparing its predicted time trajectory with the empirical

data. For one speaker (Lisa), the best three models had cubic or quartic time trends where

the predicted CSD rate blows up at the endpoints. We used the next-best model for Lisa

which made sensible predictions (fourth-lowest AIC, quadratic time trend).

7. For these speakers, morphological class is highly collinear with the intercept, since the value of the
intercept is always 1, and the value of the “is this a semi-weak past” predictor is nearly always 0.
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Table 7.2: Summary of best model of time dependence of CSD rate for each speaker,
chosen by AIC. σclip and Time Trend are the standard deviation of the model’s by-clip
random intercept and the degree of its long-term time trend, if any. N and Nclip are the
number of data points and the number of clips per housemate.

Speaker σclip Time trend N Nclip

Dale — — 293 24
Darnell — — 737 39
Lisa — Quadratic 492 30
Luke — — 568 28
Michael 0.596 — 777 41
Mohamed — — 288 24
Rachel — — 486 38
Rebecca — Quadratic 231 16
Rex — — 586 28
Sara — — 262 16
Stuart — — 262 17

7.3.2 Results

Table 7.2 summarizes the type of time dependence in each speaker’s dynamic model of

CSD rate, in the same format as Table 7.1. Eight speakers show no time dependence, one

shows by-clip variation, and two show time trends. There is no systematic relationship

between the amount of data (N or Nclip) and the type of time dependence selected, across

speakers.

7.3.2.1 Predicted time dependence

As for VOT, we examine the time trajectory predicted for each speaker’s CSD rate when

all linguistic factors are held constant: continuous predictors at their mean value, and

each contrast for the discrete predictors at 0. The predicted values roughly give a house-

mate’s ‘mean CSD rate’, in logit space.

Individual speakers The solid lines in Fig. 7.3 show the predicted time trajectories for

each housemate, in the same format as used as for VOT (Fig. 7.1): jagged/smooth lines
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indicate the presence/absence of by-clip variation.

To visualize empirical trends in each housemate’s data, we applied a generalized ad-

ditive model smoother with a logistic link to the empirical CSD rates for each word pro-

duced at least once by a speaker on a given day.8 Each dashed line in Fig. 7.3 shows a

housemate’s estimated time trajectory, with shading indicating 95% confidence intervals.

Again, the height of each speaker’s empirical and predicted trajectories are not com-

parable, but their shapes are. The empirical trajectories are higher than the predicted tra-

jectories because they do not incorporate by-word offsets in deletion rate (as the by-word

random intercept does, in the models underlying the predicted trajectories). Thus, very

frequent words such as and and just, which have high deletion rates, are over-weighted.

With this caveat, the models fit the observed trajectories reasonably well. Most speak-

ers have nearly-flat empirical trajectories, and no predicted time trend. For one speaker

(Rebecca) with a predicted time trend, there is a good fit with the empirical trend. For

the other speaker (Lisa) with a predicted time trend, the fit with the empirical trend is

poor—the model predicts too much change. Closer inspection of Lisa’s data shows that

her model is overfitting to data from her first clip, which happens to have a high deletion

rate. Because this clip is so much earlier than her others, it has disproportionate influence

when fitting a polynomial time trend, the only kind we are allowing. Lisa’s CSD model

is the one case where our method predicts markedly more change than is observed in the

empirical data.

All speakers Fig. 7.4 shows the predicted time dependence of CSD rate for all speakers,

in probability space (=the inverse logit of the model’s prediction). Only three speakers

show any time dependence, and there is no obvious pattern of convergence. Interest-

ingly, the only speaker who shows by-clip variation is Michael, the one Scottish speaker.

Sociolinguistic studies of CSD have generally found very little style shifting; an important

8. Using the defaults for gam in the mgcv package in R, where the smoothing parameter is estimated
using generalized cross validation (Wood, 2012).
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Figure 7.3: Solid lines: Best model of CSD rate time dependence for each speaker, with
linguistic predictors held constant. Non-smooth lines indicate by-clip variation, with lin-
ear interpolation between each clip’s fitted value. Dashed lines and shading: Empirical
time trajectory of speaker’s CSD rate, smoothed using a generalized additive model (lo-
gistic link) on proportions of CSD realization for each word type in each clip, with 95%
confidence intervals.
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Figure 7.4: Predicted time dependence of CSD rate under the best model for each speaker,
with linguistic predictors held constant. Smooth trajectories are for speakers with no by-
clip variation. The non-smooth trajectory indicates by-clip variation, with linear interpo-
lation between each clip’s fitted value.

exception is Smith et al.’s study of Scottish adults and children (Smith et al., 2009). It is

tempting to speculate that Michael’s by-clip variation is due to style shifting.

Compared to other variables, the number of speakers who show no time dependence

is striking. A possibility worth considering is that more speakers in fact show by-clip

variation which is not detected, because it is impossible to determine how much the dele-

tion rate for some clips differs from the norm: clips containing only a few tokens, or only

extremely frequent word types, (‘and’, ‘just’), or both. Mixed models are supposed to be

robust to such unbalanced data (i.e., clips containing extremely different numbers of to-

kens or word types). But of course, for sufficiently unbalanced data no by-clip variation

will be found even if it is underlyingly present.9 As a quick test of whether this might

be responsible for the lack of predicted time dependence, we refit all models using data

9. We thank Gregory Guy for pointing this out.
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only from clips with at least 10 tokens and five types. The best model for each speaker us-

ing this restricted dataset looks similar to the model resulting from using the full dataset,

except for Michael, who now shows no time dependence. Thus, slightly less time depen-

dence is predicted when uninformative clips are excluded, suggesting that they are not

responsible for the lack of predicted time dependence.

7.4 Variables 3–5: Vowel formants

7.4.1 Models

As discussed above, a different procedure from VOT and CSD is used to build dynamic

models for vowel formants, due to data sparsity. For each speaker, we model formant

residuals from the six static models: F1 and F2, for GOOSE, STRUT, and TRAP’. For each of

the six cases, we try 12 models corresponding to the different types of time dependence.

In addition, each model includes a by-word random intercept, to control for by-word

pronunciation variation within a housemate’s dialect (beyond the effects of consonantal

context) and for the unbalanced distribution of tokens by word types.

Some of the 12 speakers (who are in the house for at least 50 episodes) have very few

tokens for one or more of the vowels, making it impossible to distinguish between by-clip

variation and long-term trends. We therefore choose an arbitrary cutoff, and only model

speakers who have at least 90 tokens for a given vowel (see Table 7.3).

7.4.2 Results

Table 7.3 summarizes the form of time dependence selected for each speaker, for F1 and F2

residuals of each vowel, in the same format as Tables 7.1 and 7.2. Five of eight speakers

show some time dependence (in F1 or F2) for GOOSE, eight of ten for STRUT, and all

eight for TRAP’. Thus, the realization of TRAP’ is the most consistently plastic variable

within speakers among the five variables we have examined. There is much more by-clip

192



variation in F1 than in F2, across vowels. For both formants for each vowel, there does

not appear to be any systematic relationship between the amount of data for a speaker (N

or Nclip) and the type of time dependence in their dynamic model.

7.4.2.1 Predicted time dependence

Because the static models for each vowel’s formants included a by-speaker random inter-

cept, the dynamic models all make predictions centered at 0 (because they model residu-

als from the static models). To compare speakers’ predicted formant trajectories in vowel

space, we need to add constants to each speaker’s formant residual trajectories so they are

centered at her mean formant values for each vowel. We do so by adding each speaker’s

random intercepts from the six static models to the predictions of her six dynamic mod-

els. The resulting predictions can be interpreted roughly as ‘mean normalized formant

values’.10

Individual speakers Figures 7.5–7.7 show predicted time trajectories for each formant

(solid lines). Also shown are empirical time trajectories, smoothed over all tokens (dashed

lines), and 95% confidence intervals (shading). Overall, the predicted trajectories match

the empirical trends quite well. The dynamic models are generally conservative, in the

sense of predicting less change than is empirically observed, as was also the case for VOT.

When a time trend is predicted, it is nearly always shallower than the corresponding

empirical trend. In most cases where by-clip variation is predicted, the estimated by-clip

variability (height of squiggles) is similar to the observed by-token variability (height of

shading). In some cases no time dependence is predicted (e.g., GOOSE F2 for Darnell),

even though a trend seems possible from the empirical data.

10. For VOT and CSD, we held linguistic factors constant to obtain time trajectories. This step is not
necessary for the predictions of the dynamic models for formant residuals, since the effects of linguistic
factors have already been regressed out.
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Table 7.3: Summary of best models of time dependence for F1 and F2 residuals for each
vowel, chosen by AIC. Only models for speakers with at least 90 tokens of a vowel are
shown. Residuals are from the static models in Sec. 6.3 (see text). σclip is the standard
deviation of the model’s by-clip random intercept; the value in Hz is given in parentheses.
Time Trend is the degree of the model’s long-term time trend, if any. N and Nclip are the
number of data points and the number of clips per housemate.

Vowel Speaker F1 F2
N Nclip

σclip Time trend σclip Time trend

GOOSE

Darnell — Linear — — 205 37
Kathreya — — — — 111 23
Lisa — — — — 126 31
Luke 0.113 (20) — 0.149 (68) — 185 28
Michael 0.129 (19) Linear — — 192 41
Mohamed 0.158 (21) — — — 103 24
Rachel 0.139 (27) — — — 133 35
Rex — — — — 242 37

STRUT

Dale — — — — 110 23
Darnell 0.077 (10) — — Linear 284 36
Kathreya 0.242 (54) — — — 189 25
Lisa 0.130 (25) — — Linear 234 30
Luke — — — — 286 28
Michael 0.114 (17) — — — 451 45
Mohamed 0.316 (43) — 0.131 (43) — 161 27
Rachel 0.173 (33) — 0.108 (48) — 189 33
Rex 0.137 (15) — — — 311 38
Sara — Quadratic — Quadratic 144 15

TRAP’

Darnell 0.153 (20) — — Quadratic 271 37
Kathreya — — — Linear 92 23
Lisa 0.146 (52) Linear — — 149 31
Luke 0.246 (44) — — — 202 28
Michael 0.102 (15) Linear 0.075 (31) — 337 41
Rachel — Linear 0.260 (115) — 94 32
Rex 0.190 (20) — — — 123 34
Sara 0.335 (62) — — Linear 107 18
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Table 7.4: Number of speakers who show each type of time dependence for each variable.

Time VOT CSD GOOSE STRUT TRAP’
Dependence F1 F2 F1 F2 F1 F2

None 2 8 3 7 2 5 1 3
By-clip 5 1 3 1 7 2 4 2

Time trend 4 2 1 0 1 3 1 3
Both 1 0 1 0 0 0 2 0

All speakers Fig. 7.8 shows the predicted time trends in F1 and F2 for each vowel for

all speakers together, with shading indicating by-clip variation.

GOOSE shows the clearest case of possible convergence, in F1. The two speakers with

time trends, Michael and Darnell, start out with the highest and lowest F1, and over the

course of the season move towards the mean F1 value in the house. F2 is remarkably flat,

with only one speaker showing by-clip variation. For STRUT, three speakers show time

dependence in F1 or F2, but there is no pattern that can be interpreted as convergence. For

TRAP’, three speakers show time dependence in each formant, and some could be argued

to be converging towards the mean value in the house. For F1, the two speakers who start

highest (Michael, Lisa), decrease over the season; for F2, the speaker who starts highest

(Darnell) also decreases. But the other three speakers cannot be interpreted in this way:

Rachel moves away from the mean for F1, as do Katherya and Sara for F2.

7.5 Variability

Fig. 7.9 shows the predicted patterns of time dependence for all variables, for all speakers.

The distribution of types of time dependence among different variables is summarized in

Table 7.4.

There is huge variability in the type of time dependence across speakers and vari-

ables. Usually, different speakers show qualitatively very different time dependence for

a given variable; within the same speaker, different variables usually have qualitatively
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different dynamics. This is one of our main findings: variability is the norm for time tra-

jectories of phonetic and phonological variables in this medium-term data. In this sense,

the dynamics of variables in the house look more like long-term change (highly variable

outcomes for different speakers and variables) than short-term change (relatively robust

shifts across speakers and variables).

However, there is also some evidence for structure in the variability, at the level of

clips, speakers, and variables.

7.5.1 By-clip variability

Many of the dynamic models show significant by-clip variability in a speaker’s use of a

variable. By-clip variability could be due to random day-to-day fluctuations, or to style-

shifting (any variation due to the social or situational context). We consider two possible

sources of style shifting.

Conversational topic and context Housemates come to the diary room for a variety of

reasons. How they use a variable within a clip could depend on why they are in the diary

room, or the topic of conversation. As a rough test for such dependence, we coded clips

as one of six types, depending on why the housemate was in the diary room.11 Only

one type had sufficient sample size (number of clips) to check for an effect: whether a

housemate was called to the diary room to nominate or not. Recall that once per week,

housemates are called to the diary room to nominate two other housemates for eviction,

and to explain their decision. Nominations are a very socially-salient event in the house,

and housemates presumably are aware that footage of them nominating is very likely to

be broadcast. At least impressionistically, some housemates seem to talk in a different

register when nominating.

11. Housemates could be called to the diary room to perform a task, to nominate, to be disciplined, or for
another reason (four types); they could also come on their own initiative (one type), or it could be unclear
why they are in the diary room (one type).
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To test for style shifting when talking about nominations, we use a new by-clip vari-

able, NOMINATION, which is 1 for tokens in a nomination clip and 0 otherwise. As a clip

level variable, NOMINATION can be thought of as a third type of time dependence (along

with random by-clip variation and time trends). We add two new models of time depen-

dence to the 12 already tried: one including just a fixed effect of NOMINATION (Model 13),

and one including a fixed effect of NOMINATION and a by-clip random intercept (Model

14). In the first model, a housemate’s use of a variable only differs as a function of whether

she is nominating; in the second model, her use of a variable varies both randomly among

clips, as well as by whether she is nominating. For each variable, we now choose a best

model using AIC from among 14 models.

Table 7.5 summarizes the effect of adding these two models on which types of time

dependence are selected for speakers for each variable. In a large majority of cases, there

is no change: the type of time dependence chosen is one of the original 12. But there are

three types of cases where the best model now involves NOMINATION. In six cases, Model

14 is chosen instead of by-clip variation, meaning that some random by-clip variation can

instead be attributed to whether the speaker is nominating or not. In two cases, Model 13

is chosen instead of by-clip variation, meaning that all by-clip variation can be attributed

to whether the speaker is nominating. In five cases, Model 13 is chosen instead of no time

dependence, meaning the speaker’s usage does differ among clips, just not randomly.

Importantly, we do not see a fourth possible type of change, where what we thought was

a time trend turns out to be attributable to whether the speaker is nominating.

The 12 cases where the best model now involves NOMINATION provide good evidence

for at least some style shifting. However, most by-clip variation remains unaccounted for.

Big Brother identity Recall that in each clip housemates are speaking to one of many

speakers with very different accents, all called simply Big Brother. Although Big Brother

usually says little, it is possible that housemates are influenced by his or her speech. Ide-
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Table 7.5: Summary of the changes in types of time dependence chosen for each speaker
for each variable, when two types of time dependence including NOMINATION are added
to the set of candidates: “nomination only” and “by-clip plus nomination.” See text.

VOT CSD GOOSE STRUT TRAP’
F1 F2 F1 F2 F1 F2

No change 10 12 8 5 7 8 6 6
By-clip only→by-clip + nomination 1 0 0 0 2 1 2 1

None→nomination only 0 0 0 3 0 1 0 1
By-clip only→nomination only 1 0 0 0 1 0 0 0

ally we would test for this possibility by determining which clips correspond to which

Big Brother, and check for any systematic shifts as a function of Big Brother’s identity. We

tried to perform the first step of this process by simply listening to Big Brother’s speech

in different clips, and found it very difficult to determine which clips have the same Big

Brother, given how little he or she says per clip. In future work we will try other meth-

ods, such as having British speakers judge similarity among the (British) Big Brothers in

different clips, or quantifying similarity using speaker-identification methods from the

automatic speech recognition literature.

Importantly, though, whatever accommodation to Big Brother occurs cannot be too

widespread, or we would expect to see by-clip variation in every case. In the many cases

of time trends without by-clip variation, or no time dependence, any accommodation

that occurred was not extensive enough to be included in the best model. Under the

(questionable) assumption that roughly similar levels of accommodation will occur for

all speakers and for all variables, the lack of by-clip variation in many cases suggests

that accommodation is not a significant contributor to cases where by-clip variation is

observed. Nonetheless, checking for accommodation to Big Brother is a crucial direction

for future work.
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7.5.2 Dynamics of different speakers

Given time trajectories for multiple variables for each speaker, a natural question is whether

different speakers show characteristic patterns of time dependence, across variables. Qual-

itative examination of Fig. 7.9 suggests that they may. Some speakers seem less suscep-

tible to change: Luke and Mohamed show no time trends for any variable, and by-clip

variation for only some variables, while Michael shows by-clip variation for all variables,

and only very slight time trends.12 Other speakers seem more susceptible to change: both

Rachel and Sara show large time trends or large by-clip variation for all but one variable.

These differences between speakers suggest an interesting hypothesis, that adults dif-

fer in the plasticity of their sound system. Of course, our classification of speakers as more

or less plastic is post-hoc. The plasticity hypothesis must be tested in future work, either

by investigating either more variables for these 12 speakers, or using a different dataset

containing more speakers.

Why might different speakers show different patterns? The same trouble we had in

explaining by-speaker differences in the static models is again relevant: in the absence

of a large difference between speakers with an obvious interpretation, it is hard to say

much with 12 speakers. No patterns jump out as relatable to factors from the short-term

or long-term literature which impact how much speakers change. (For example, age of

arrival, length of stay, and identity factors in dialect change studies; social or attitudinal

factors in short-term studies.) Cases of possible convergence are discussed below, under

by-variable differences.

Speakers are constantly interacting in the house, and the type and frequency of inter-

actions between particular speakers is strongly impacted by socially-salient events, like

the division of housemates into two groups (“heaven” and “hell”) for one month.

Given the extreme amount of social interaction in the house, we might expect speak-

12. We also have the most data for Michael, so it is possible we are able to resolve small time trends for
him, but not speakers with less data.
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Table 7.6: Percentage of speakers for each variable who show by-clip variation, a time
trend, or either pattern, and whether possible convergence is observed.

VOT CSD GOOSE STRUT TRAP’

By-clip variation (with or without time trend) 41% 9% 50% 70% 88%
Time trend (with or without by-clip variation) 42% 18% 25% 30% 75%
Either 75% 27% 63% 80% 100%

Possible convergence? yes no yes no yes

ers’ trajectories for different variables to influence each other, particularly for pairs where

interaction is very frequent, or has particular social meaning. We might also expect tra-

jectories to be expected by major events in the house that affect both patterns of interac-

tion and social structure, such as housemate additions or evictions, or the introduction of

an artificial social class distinction between housemates for one month (the heaven/hell

split). No clear effects of either type have emerged so far, from qualitative inspection of

the trajectories for groups of housemates who might be expected to influence each other

(e.g., groups of housemates who grow particularly close). In future work we will look

more carefully, using a detailed record of social interactions in the house.13

7.5.3 Dynamics of different variables

Examination of Fig. 7.9 suggests that variables show different patterns of time depen-

dence. One way to compare variables is by the percentage of speakers who show change,

in the sense of showing by-clip variation, time trends, or either. Another is whether con-

vergence is observed or not. Both comparisons are given in Table 7.6.

With only five variables, we cannot say anything for certain about why variables show

different patterns of time dependence. What we can do is evaluate several proposals from

13. In a study of the dynamics of VOT for five housemates (Bane et al., 2010), we tentatively reported
an effect of the heaven/hell split on VOT trajectories. However, the effect washes out in the current study,
where more speakers are considered and by-clip variability is taken into account. This spurious result
illustrates the importance of caution when proposing causes of observed patterns of time dependence, both
in this and other longitudinal studies, given that many proposed explanations are post-hoc and based on
relatively little data.
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the short-term and long-term literatures, discussed in the previous chapter, for compati-

bility with our results.14 Unfortunately, many other proposals (such as rule complexity)

cannot be evaluated for our set of variables.

Social salience A role for social salience in which variables change has been advanced

in both the short-term and long-term literatures. The standard argument is that more

socially-salient variables are more likely to change, though the opposite view has also

been proposed in some cases (see Sec. 4.3.1.3, 4.3.2.4). In our case, the most socially-

salient variables are STRUT, and to a lesser extent TRAP’; CSD, VOT, and GOOSE are much

less salient, if at all (see Sec. 4.4.3.1). And indeed, the percentage of speakers showing any

change is higher for STRUT and TRAP’ than for CSD, VOT, or GOOSE. This pattern also

holds for by-clip variation, though not for time trends.

Phonological status The phonological status of a variable is often invoked to explain

differences in susceptibility to change, particularly in the long-term literature. As noted

by Auer et al. (1998), what variables are phonological, and whether being phonological

is a discrete property or a gradient scale, is highly theory-dependent. However, most au-

thors would likely agree that variables which show only gradient, subphonemic variation

are the ‘least phonological’. This class certainly includes GOOSE and VOT: all speakers

have the same number of categories, and differ only in their phonetic implementation.

The same holds for TRAP’, although the lexical items corresponding to this vowel differ

by speaker. Interestingly, these three variables are exactly those which show potential

convergence. However, they are not more or less likely to change than CSD or STRUT, for

any of the three types of change.

14. The rationale for considering short-term explanations is that medium-term change could be the result
of accumulated short-term changes. The rationale for considering long-term explanations is that whatever
mechanism is responsible for some variables changing more than others over a timescale of years may
apply over a timescale of three months as well.

206



Phonetic distance Phonetic distance, meaning some measure of perceptual or articu-

latory distinctness, is often invoked in both the short-term and long-term literatures:

change is more likely for variables whose variants are further apart. This concept can

be interpreted across multiple variables, or for different speakers within a single variable.

At the level of all our variables, the prediction would be that more change should occur

for variables with a broader range of variants. However, it is not clear how to compare

ranges for different variables, since their distances are measured in different units (cf.

Auer et al., 1998: 170).

Within a single variable, change is hypothesized to be more likely for speakers who

are further away from the ‘target’.15 The cases of potential convergence we observed can

interpreted this light. In each case, one or more housemates with the most extreme (high-

est or lowest) value for a variable showed a trend over the course of the season towards

the variable’s mean value in the house. Thus, it was the speakers with the greatest dis-

tance from the mean who changed towards it. However, in most cases of great phonetic

distance, housemates did not show time trends towards the mean. The most striking case

is STRUT, where there is a clear distinction between Northern English housemates, who

use [U] (Dale, Lisa, Luke), and other housemates, who use [2] (Fig. 7.6). No speaker in

either group shows a time trend towards the other group.

Contrast maintenance Recall that Nielsen (2011) showed in a short-term experiment

that speakers would shift their VOTs for voiceless stops upwards (towards a model speaker

with modified VOTs), but not downwards. Nielsen ascribed this asymmetry to contrast

maintenance: decreasing VOT would endanger the contrast with voiced stops, while in-

creasing VOT does not. If this effect persisted over many interactions, we would expect

to observe a bias against decreasing VOT in medium-term trajectories. Instead, we see

the opposite pattern (Fig. 7.2): three of the four speakers with time trends show a linear

15. We assume the simplest possible interpretation of distance for each variable: the difference between
two speakers in CSD rate, F2 for GOOSE, etc.
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decrease in VOT, and the remaining speaker decreases following an increase (quadratic

trend). Of course, there are many differences between our study and Nielsen’s, beyond

the timescale: the setting (laboratory vs. diary room), type of speech, American vs. British

speakers. But the lack of a bias against decreasing VOT may suggest that contrast main-

tenance is not a concern over the medium term.

7.6 Discussion

The unique setting of the Big Brother house has allowed us to examine day-by-day tra-

jectories of phonetic variables within individuals, for the first time. Our main finding is

the existence of massive variability in these trajectories, over a period of three months; we

described possible explanations for this variability, at the level of clips, housemates, and

variables. The observed dynamics of variables in the house bear on a number of issues

about short-term and long-term dynamics, and the relationship between them. Before

turning to these, we discuss a few important caveats for interpreting our results.

7.6.1 Caveats

As a first study of medium-term time trajectories of linguistic variables, this study has

necessarily been exploratory. We did not know what hypotheses to test prior to examining

the data, and could only formulate explanations for patterns seen in the data post-hoc. As

with any post-hoc explanation, the explanations for variability proposed in the previous

section are only tentative. They must be tested on new datasets, or for different variables

on the Big Brother data, and should only be generalized to other cases with caution. It

is worth noting that this issue is not restricted to the current study, but applies to much

work on longitudinal variation in individuals. Since we still know relatively little about

change within individuals, many short-term and long-term studies are analyzed at least

in part post-hoc; this issue is just not usually highlighted.
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A second caveat relates to the robustness of our selection of a type of time dependence

for each dynamic model. As noted above, the choice of model selection criterion matters;

in particular, using BIC would give much sparser models than AIC. In ranking models by

AIC, we found it was often the case that the second-best (and sometimes more) models

differed relatively little in AIC from the top-ranked model. Both of these points suggest

that we have sometimes not chosen a model of time dependence which is unequivocally

better than others. Yet, we saw that our method generally predicts time dependence that

matches the empirical data well, suggesting that when different models types of time de-

pendence fit the data nearly as well as each other, it is because we had too little data to dis-

tinguish between them. To better characterize time dependence in future work, we could

either use more data, or employ a model-averaging scheme, where different high-ranked

models are combined (Burnham and Anderson, 2002). What impact would choosing the

“wrong” time dependence have? At a coarse level, we may have sometimes concluded

there was more change than there actually was, or concluded there was no change when

in fact some occurred. Importantly, we saw empirically that our procedure for choosing a

model of time dependence tends to be conservative: less change was predicted than was

observed empirically. If anything, we may be underestimating the amount of change in

some cases.

Finally, it is important to remember that all our conclusions are based on speech from

the diary room, not interactions between housemates. We are using diary room speech to

look for changes in housemates’ baseline use of a variable. In doing so we abstract away

from short-term shifts in social interaction, or from other sources, and ask whether we

observe time dependence which might be due to an accumulation of short-term shifts. But

our use of diary room speech means we cannot conclude anything about time dependence

in how housemates talk to each other, a priori. In principle, a very different picture might

emerge than for diary room speech. For example, clearer effects of social interaction might

emerge if we looked just at conversations between a particular pair of housemates over
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time. Examining the dynamics of phonetic variables as used in social interactions in the

house will be a primary focus of future work.

7.6.2 The persistence hypothesis

The persistence hypothesis is that short-term shifts that an individual makes during in-

teraction can and do accumulate over time into long-term change. This hypothesis is im-

plicitly assumed in much of the phonetic convergence literature, and explicitly assumed

in the change-by-accommodation and identity projection models of the relationship be-

tween short-term and long-term change.16 Stronger and weaker forms of the persistence

hypothesis can be taken, depending on how widespread, accumulation is thought to be,

across speakers and individuals. It is not entirely clear how strongly the hypothesis is

meant in previous work. For example, Trudgill allowed room for variation in his ear-

lier formulation, but more recently has emphasized the automaticity and pervasiveness

of accommodation, which might be taken to suggest that accumulation is automatic as

well.17

Under the strong form of the persistence hypothesis, we would expect to see perva-

sive change in the Big Brother house, given the extreme level of social interaction with the

same people. This change could take the form of time trends or day-to-day variability, de-

pending on how systematic the direction of short-term shift is in a particular housemate’s

use of a variable in interaction. But one way or another, there should be rampant time

dependence. The observed dynamics do not support the strong persistence hypothesis,

because we see no time dependence in a significant minority of cases. The most striking

examples are trajectories for CSD: the 11 housemates considered have very different rates

16. However, face-to-face interaction is not required in the identity projection model.

17. “...accommodation may become permanent, particularly if attitudinal factors are favourable.” (Trudg-
ill, 1986: 39), versus “Linguistic diffusion and new-dialect formation are ‘mechanical and inevitable’ be-
cause linguistic accommodation is automatic, because, as Cappella (1997:69) says, it is an aspect of ‘the
relatively automatic behaviors manifested during social interaction’” (Trudgill, 2008: 252).
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of usage (so there is ample room to change towards each other), but eight of them show

no time dependence.

On the other hand, we do observe day-by-day variation and long-term trends in many

cases, which could be due to accumulated short-term shifts. So our results are consistent

with a weaker form of the persistence hypothesis, where speakers and variables show

large differences in how much short-term shifts accumulate.

7.6.3 The stationarity hypothesis

The stationarity hypothesis is that individuals vary very little from day to day in their

use of a variable, after controlling for conditioning factors such as speaking style. This

hypothesis is necessary to conclude from long-term studies that a (statistically significant)

difference observed in a speaker’s use of a variable at two time points represents a mean-

ingful change. The strong version of the hypothesis would be that individuals do not

vary their baseline use of a variable at all from day to day. Assuming that at least some of

the extensive by-clip variation we observe cannot be accounted for by style shifting, our

results do not support the strong version. However, in a significant minority of cases no

time dependence is observed, and by-clip variation occurs much more consistently across

speakers for some variables (TRAP’) than for others (CSD). So again, our results are con-

sistent with a weaker version of the hypothesis: there is random day-to-day variation for

only some speakers, for some variables.

The relevance of this finding depends on how much of the observed by-clip variation

is truly due to day-by-day noise, and how much to style shifting. Controlled investiga-

tions of day-by-day variability are needed to establish its magnitude for different vari-

ables. The level of day-by-day variability is relevant not just for long-term studies, but

the study of phonetic variability in general. If it turns out that significant day-by-day

variability in phonetic variables is the norm, then previous work has likely overestimated

the amount of by-speaker variability that exists in speech communities.
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7.6.4 The relationship between short-term and long-term change

At the end of the previous chapter, we noted a tension between the literatures on short-

term and long-term dynamics of phonetic variables. Short-term shifts are relatively robust

across speakers and variables, while long-term shifts are highly irregular, with massive

variability in outcomes for different speakers and variables. What is the relationship be-

tween the patterns seen in short-term and long-term dynamics?

Our approach to this question was to examine medium-term trajectories of phonetic

variables. We found that speakers and variables show highly variable medium-term dy-

namics. A majority of cases were stable over the medium term, in the sense of showing no

time dependence, or only by-clip variation. In a minority of cases, there was systematic

change over time (time trends). These observations are strikingly similar to the results

of long-term studies: massive variability among speakers and variables in how much

change occurs, and relative stability in a majority of cases. The congruence between our

results, on a timescale of months, and long-term studies, on a timescale of years, suggests

that the disconnect between short-term and long-term dynamics is already present on a

timescale shorter than months.

With this in mind, we can sketch a tentative account of the relationship between short-

term and long-term dynamics in individuals, on several timescales:

1. Interaction: Some short-term shift during interaction nearly always occurs, across

speakers and variables.

2. Days: A speaker’s short-term shifts for a particular variable will often build up

enough to affect her production from day to day, but whether this occurs varies

by speaker and variable.

3. Months–years: Accumulation over the medium to long term occurs in a minority of

cases, for some people and variables.
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Why would the amount of accumulation differ by speaker and by variable, in (2) and

(3)? Tentatively, some people have more plastic sound systems than others. Differences

in plasticity could result from individual differences in mechanisms underlying percep-

tion and production, cognitive factors (e.g., aspects of a speaker’s personality), or social

factors (e.g., women might be more variable than men). Also tentatively, phonetic and

phonological variables differ in how subject they are to medium-term change. The pat-

terns we observed for different variables suggest two hypotheses. Social salience makes

a variable more flexible from day-to-day, but not more likely to accumulate over months–

years. Purely phonetic variables are more susceptible to actual convergence (change over

the medium term towards a target) than “more phonological” variables.

More solid answers on why people and variables differ in plasticity must await future

work. One intriguing possibility is that individual differences in the link between speech

perception and production underly interspeaker differences in medium-term dynamics.

Although short-term shifts occur robustly, individuals in short-term studies differ greatly

in the amount of shift. Perhaps the speakers who change less over the medium term are

precisely those who shift less during interaction. Alternatively, perhaps speakers differ

in how much short-term shifts persist from one interaction to the next. (In exemplar-

theoretic terms, speakers may vary in the decay rate for exemplars encountered in per-

ception.) The first possibility can be tested in the Big Brother data by examining the size

of short-term shifts different housemates show for our five variables during interactions,

and comparing to their medium-term patterns; this is a primary direction for future work.

The second possibility cannot be tested for Big Brother, since in general we only have ac-

cess to isolated conversations (rather than a continuous sequence).

The account sketched in (1)–(3) is admittedly very general, even vague. We believe

that much more empirical work documenting longitudinal variation in individuals is

needed before making stronger hypotheses about its sources, because the basic empir-

ical facts are far from clear at this point. Much of the existing literature assumes that
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a relatively straightforward link between short-term and long-term change exists, and

certainly that some link does exist. Yet the current study suggests that the dynamics of

phonetic variables over months, even in a setting of extreme social interaction, are highly

complex. In our opinion, current accounts of the link between short-term and long-term

change may be overly ambitious, given how little is currently known about longitudinal

variation in individuals.

Our tentative tone should not be taken to mean that we believe short-term shifts are

not linked to long-term change, but rather that assuming there is a link, it is indirect and

poorly understood so far. Although the current study considers only adults, these points

by and large hold for adolescents as well.18 In general, a vast amount remains to be

learned about phonetic and phonological dynamics in individuals at different timescales,

and their sources. Thanks to previous work, a good deal is known about dynamics on

very short and very long timescales. To understand the relationship between them, it is

necessary to examine how speakers change on timescales in between. This project has

been one step in this direction.

18. Longitudinal studies of children are much more common. Particularly notable is a remarkable project
by Wolfram and colleagues which followed African American Vernacular English speakers from ages 1–17
(van Hofwegen and Wolfram, 2010).
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CHAPTER 8

CONCLUSION

This thesis has addressed phonetic and phonological dynamics in individuals during

adulthood, as well as the related areas of automatic phonetic measurement, and syn-

chronic variation in spontaneous speech. Our main contributions fall into three areas,

and suggest directions for future work in each.

Medium-term phonetic and phonological dynamics The most important contribution

of this thesis is a medium-term study of phonetic and phonological dynamics in individ-

uals, over a period of three months. This study is the first (to our knowledge) to examine

day-by-day variation in the sound systems of individuals. Our results suggest a possible

link between the different dynamics observed in short-term and long-term studies, rooted

in huge differences among speakers and variables in how much and what type of change

occurs in the medium term.

However, our study perhaps raises more questions about longitudinal variation than it

answers. We allowed for four qualitatively different patterns of time dependence for vari-

ables within individual speakers—no change, by-clip variation, time trends, and both—

and found many cases of each. The differences among speakers in characteristic patterns

of time dependence are particularly intriguing. Their causes might lie in patterns of social

interaction in the house, social factors (e.g., the social roles individuals come to play in

the house), or individuals might differ in the plasticity of their sound systems. Exploring

these different options is an important direction for future work, both on the Big Brother

corpus and in other datasets.

The existence of time trends in our data shows that short-term shifts during conversa-

tion for some speakers could have accumulated into change over weeks, but not whether

they did. An important direction for future work will be analyzing whether speakers who

show more change in the medium term are also those who change more in short-term in-
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teractions with other housemates; if true, this would provide more convincing (though

still indirect) evidence for the accumulation of short-term shifts within housemates. More

generally, experimental studies are needed to directly test whether short-term shifts ever

accumulate, and on what timescale they persist; to my knowledge, there are no studies

addressing the persistence of short-term shifts in phonetic or phonological variables for

more than an hour. This is an important direction for future work, given that persistence

of short-term shifts is (tacitly or explicitly) assumed by many scholars.

In many cases, speakers on Big Brother did change their use of a variable over three

months. An important question raised by our results is how deeply such change af-

fects speakers’ sound systems. For each variable, we tested for time dependence in each

speaker’s baseline value, after controlling for the effects of conditioning factors. But we

do not know whether the effects of the conditioning factors themselves changed over time.

Intuitively, how a variable is conditioned constitutes a deeper part of a speaker’s linguis-

tic knowledge than its baseline value, and is more stable across situations and speakers:

the qualitative effects of conditioning factors (i.e., whether a following consonant pro-

motes or inhibits CSD) for a given variable tend to not vary for the same speaker across

different speaking styles, or across speakers in a speech community, while the baseline

value does.1 Analogously, perhaps baseline values are much more prone to longitudi-

nal variation than conditioning factors. An important direction for future work is testing

whether the probabilistic grammar characterizing a speaker’s use of a variable can change

over time. Testing this hypothesis in spontaneous speech will require huge datasets, be-

cause of the sparsity of many conditioning factors. (For example, the rarity of past tenses

relative to monomorphemes would make studying the dynamics of the effect of morphol-

ogy on CSD very difficult.) Experimental studies, where the effect of a conditioning factor

1. c.f. Lim and Guy (2005: 157): “The linguistic unity of speech communities lies in shared linguistic
practices and evaluations. Where variable processes are concerned, this linguistic unity extends to shared
constraint effects.... Although rarely explicitly stated, the conventional practice in sociolinguistic research
is to assume that linguistic constraint effects are stable across different speech styles.”
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can be fully assessed at several points in time, can more directly address how plastic in-

dividuals are in this respect, but with less ecological validity.

Using natural experiments to study dynamics Another contribution of this thesis is

to demonstrate the utility of natural experiments for studying variation and change. In

particular, a season of Big Brother served as an excellent laboratory for studying medium-

term change in sound systems. The Big Brother franchise holds great potential for study-

ing the dynamics of linguistic systems more generally. Unlike many natural experiments,

Big Brother is quasi-replicable: there have now been hundreds of seasons of shows in

many languages, with relatively similar formats. Thus, a surprising finding or a tentative

hypothesis based on data from one season can be tested on data from another season.

Natural experiments such as Big Brother are particularly valuable for examining tra-

jectories of linguistic variables across many timepoints. The day-by-day resolution of Big

Brother is exceptional, and probably not replicable in any real-world setting. But many

other natural experiments allow the possibility of observing trajectories of linguistic vari-

ables at a coarser resolution, such as university campuses, high schools, study abroad

programs, or internet forums; recent studies have begun to explore trajectories of linguis-

tic variables in such settings (e.g., Altmann et al., 2009; Chang, 2012; Orr et al., 2011). Why

examine trajectories? One motivation is empirical: we simply know very little about what

trajectories of linguistic variables look like, especially for individual speakers. Filling this

lacuna matters because what happens between the endpoints is crucial for answering

fundamental questions about variation and change, such as those addressed here: the re-

lationship between short-term and long-term dynamics, to what extent short-term shifts

accumulate, and how much day-by-day fluctuation individuals show in their use of lin-

guistic variables.

The promise and challenges of automatic phonetic measurement The main method-

ological contribution of this thesis is a new tool for automatic VOT measurement. Our
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approach combines knowledge about the cues human annotators use to measure VOT

with machine learning techniques for predicting structured output, to tailor a VOT mea-

surement algorithm that meets the three criteria laid out in the introduction: accuracy,

trainability, and robustness. Combining knowledge about the annotation task to be per-

formed with appropriate machine learning techniques is a promising direction for de-

signing algorithms to automate phonetic measurement in general.

Such tools are needed to scale up studies in phonetics and sociolinguistics. Mark

Liberman has recently argued that thanks to the advent of large speech corpora and the

computational methods to examine them, we are on the verge of a “golden age of speech

and language science”, where linguists will be able to ask fundamentally new questions

about speech production, and language more generally.2 In Liberman’s view, the type of

large-scale phonetic study made possible by new corpora and methods consists of four

steps: forced alignment, pronunciation modeling, automatic phonetic measurement, and

mixed-effects regression models.

However, the third step is highly non-trivial. Though off-the-shelf algorithms can

be used to measure some aspects of speech (especially suprasegmental variables, such as

pitch), in general they will not suffice to replace the kind of skilled manual measurements,

especially of subphonemic quantities, which underlie speech production research. To re-

alize Liberman’s vision, speech scientists will need to create or adapt methods from the

ASR and machine learning literatures, and extensively test them against human measure-

ments. In general, phonetic measurement is a fertile and largely unexplored application

area for ASR and machine learning.

2. For example, “The Golden Age of Speech and Language Science”, at http://languagelog.ldc.
upenn.edu/myl/Groningen.pdf.
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Brink, L. and Lund, J. (1975). Dansk rigsmål: lydudviklingen siden 1840 med særligt henblik
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phonetic influences on the speech of French-English bilinguals. Journal of Phonetics,
36(4):649–663.

Francis, A., Ciocca, V., and Yu, J. (2003). Accuracy and variability of acoustic measures of
voicing onset. Journal of the Acoustic Society of America, 113(2):1025–1032.

Fridland, V. (2008). Patterns of /uw/, /U/, and /ow/ fronting in Reno, Nevada. American
Speech, 83(4):432–454.

Garofolo, J., Lamel, L., Fisher, W., Fiscus, J., Pallett, D., and Dahlgren, N. (1993). TIMIT
Acoustic-Phonetic Continuous Speech Corpus. Linguistic Data Consortium, Philadelphia.

Gay, T. (1978). Effect of speaking rate on vowel formant movements. Journal of the Acous-
tical Society of America, 63(1):223–230.

Gelman, A. and Hill, J. (2007). Data analysis using regression and multilevel/hierarchical mod-
els. Cambridge University Press, Cambridge.

Giles, H., Coupland, N., and Coupland, J. (1991). Accommodation theory: Communi-
cation, context, and consequence. In Giles, H., Coupland, J., and Coupland, N., edi-
tors, Contexts of accommodation: Developments in applied sociolinguistics, pages 1–68. Cam-
bridge Univ Press, Cambridge.

Giles, H. and Powesland, P. (1975). Speech style and social evaluation.
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APPENDIX A

ANNOTATION

A.1 VOT annotation

All word-initial voiceless stops in the corpus were examined for the presence of a burst.

VOT was manually annotated whenever a burst was present, with the exception of stops

which were clearly realized as affricates or flaps. I measured a minority of tokens (730),

then trained two two undergraduate research assistants, Maria Nelson and Natalie Roth-

fels, who measured the majority of tokens (896 and 4868).

Whenever possible, VOT was simply taken to be the time difference between the on-

set of periodicity in the signal and the onset of the burst. A more involved annotation

procedure was used in cases where it was not possible to unambiguously identify one or

both of these points, as often occurs in conversational speech.

Following voiceless segment: The following vowel is either deleted or present but de-

voiced, due to the influence of a following voiceless fricative or /h/, for example in

reduced ’cause. In this case, the right VOT boundary was taken to be the boundary

between the burst and the following (unvoiced) segment, at the point where there

was the most sudden transition from a burst-like spectrum. If there was no abrupt

spectral change at the end of the burst, the token was discarded.

No following segment: The burst is followed by a period of silence, for example for

reduced to. In this case the right VOT boundary was taken to be the end of the burst.

Preceding fricative: The burst is preceded by a fricative, with no clear stop closure

separating them. In this case the left VOT boundary was placed at the point of

most rapid spectral change if one could be determined, otherwise simply halfway

between the fricative’s left boundary and the burst’s right boundary.
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Double burst: There are two bursts between the closure and the voicing onset, sepa-

rated by a short silence; usually the later burst is much longer. In this case the left

VOT boundary was taken to be the later burst’s onset.

A.2 CSD annotation

For each token, three types of annotation were made: the host word’s CELEX wordform

ID, the realization of the final t/d, and the phonological context of the final t/d. The

realization and phonological context were non-trivial, and are described below.

Annotation was performed in two rounds. In the first round, an initial coding of

approximately two-thirds of the 6108 tokens was performed by undergraduate and ad-

vanced graduate students as the term project for an advanced graduate phonology course.1

I later did a second pass of the realization and phonological context annotations for all of

these tokens. In the second round, two students from the class, Maria Nelson and Natalie

Rothfels (both native speakers of American English) underwent additional training with

me, then annotated the remaining third of the tokens. We held weekly meetings to ensure

consistency of their transcription criteria with mine.

Realization annotation To decide whether and how a word-final coronal was realized,

annotators used both acoustic and auditory cues. Emphasis was placed on determining

both whether the coronal was perceptibly “there” or not, and whether there were any

acoustic cues to realization. Each token’s final coronal was classified as one of the follow-

ing ten labels, corresponding to different phonetic realizations (e.g., burst, glottal stop),

the following phonological context, and certainty in the assigned labels.

NONE: Not realized (no perception of t/d presence or clear acoustic cues.)

NONE BUT: Not realized, but with a caveat (e.g., uncertainty).

1. The students were Andrea Beltrama, Tasos Chatzikonstantinou, Alastair Cleve, Erin Franklin, Brett
Kirken, Jackson Lee, Maria Nelson, Krista Nicoletto, Talia Penslar, Hannah Provenza, and Natalie Rothfels.
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BURST: A burst is present which unambiguously belongs to the word-final t/d.

SHARED COR: There is no burst unambiguously belonging to the word-final t/d, but

the next word begins with a coronal stop or affricate (/t/, /d/, /tS/, /dZ/) realized

with a burst, which could in principle be “shared” by the t/d and the initial segment

of the next word.

SHARED IDF: The same, but when the next word begins with an interdental fricative

(/t/, /D/) realized as a coronal stop with a burst.2

GSTOP: Realization as a glottal stop.

GLOT: Realization as glottalization (but not a full glottal stop).

CLOS: The word-final t/d is realized as an unreleased closure (which is not a glottal

stop, i.e., alveolar or dental).

NOCUE, THERE BUT: Word-final t/d is heard as present, but no acoustic cue can be

found or the token is somehow unusual.

Phonological context annotation The two preceding segments and the two following

segments were annotated both for their underlying forms and their surface realizations,

using the CELEX DISC character set (one character per phoneme). As for realization an-

notation, annotators used both auditory and spectral cues in deciding on a surface tran-

scription. Because a phonemic character set was used both for the underlying and surface

transcription, a few frequent allophones were transcribed as their closest DISC equiva-

lent (i.e., glottal stop as /t/). Pauses following the word-final t/d were also annotated,

defined roughly as silences of 30 msec or more. However, we also paid attention to what

periods of silence “sounded like” a pause, given the surrounding speaking rate. The end

of a speaker’s conversational turn was also counted as a pause.

2. Following Tagliamonte and Temple (2005: 286): “in British English initial interdental fricatives are
frequently pronounced as their corresponding stops...”
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